Menu Close

calculate-0-sin-arctan-x-2-2-x-2-1-dx-




Question Number 76352 by mathmax by abdo last updated on 26/Dec/19
calculate ∫_0 ^∞   ((sin(arctan(x^2 +2)))/(x^2  +1))dx
calculate0sin(arctan(x2+2))x2+1dx
Commented by mathmax by abdo last updated on 29/Dec/19
let A =∫_0 ^∞   ((sin(arctan(x^2 +2)))/(x^2  +1))dx ⇒  2A =∫_(−∞) ^(+∞)  ((sin(arctan(x^2 +2)))/(x^2  +1))dx =Im( ∫_(−∞) ^(+∞)  (e^(iarctan(x^2  +2)) /(x^2  +1))dx)  let W(z)=(e^(iarctan(z^2 +2)) /(z^2  +1)) ⇒W(z) =(e^(iarctan(z^2 +2)) /((z−i)(z+i)))  ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i) =2iπ×(e^(iarctan(1)) /(2i)) =π e^(i(π/4))   =π{(1/( (√2))) +(i/( (√2)))} ⇒ 2A =(π/( (√2))) ⇒A =(π/(2(√2)))
letA=0sin(arctan(x2+2))x2+1dx2A=+sin(arctan(x2+2))x2+1dx=Im(+eiarctan(x2+2)x2+1dx)letW(z)=eiarctan(z2+2)z2+1W(z)=eiarctan(z2+2)(zi)(z+i)+W(z)dz=2iπRes(W,i)=2iπ×eiarctan(1)2i=πeiπ4=π{12+i2}2A=π2A=π22

Leave a Reply

Your email address will not be published. Required fields are marked *