Menu Close

calculate-0-sin-x-3-dx-




Question Number 66170 by mathmax by abdo last updated on 10/Aug/19
calculate ∫_0 ^∞   sin(x^3 )dx
calculate0sin(x3)dx
Commented by mathmax by abdo last updated on 10/Aug/19
let I =∫_0 ^∞  sin(x^3 )dx ⇒I =−Im(∫_0 ^∞  e^(−ix^3 ) dx)  changement ix^3  =t give x^3 =−it ⇒x=(−it)^(1/3) =(−i)^(1/3)  t^(1/3)   ⇒dx =(1/3)(−i)^(1/3)  t^((1/3)−1)  ⇒∫_0 ^∞   e^(−ix^3 ) dx=(1/3)(−i)^(1/3) ∫_0 ^∞ e^(−t)   t^((1/3)−1)  dt  =(1/3)(e^(−((iπ)/2)) )^(1/3)  Γ((1/3)) =(1/3)e^(−((iπ)/6)) .Γ((1/3)) =(1/3)Γ((1/3))(((√3)/2)−(i/2)) ⇒  Im(∫_0 ^∞  e^(−ix^3 ) dx) =−(1/6)Γ((1/3)) ⇒ ∫_0 ^∞  sin(x^3 )dx =(1/6)Γ((1/3))
letI=0sin(x3)dxI=Im(0eix3dx)changementix3=tgivex3=itx=(it)13=(i)13t13dx=13(i)13t1310eix3dx=13(i)130ett131dt=13(eiπ2)13Γ(13)=13eiπ6.Γ(13)=13Γ(13)(32i2)Im(0eix3dx)=16Γ(13)0sin(x3)dx=16Γ(13)

Leave a Reply

Your email address will not be published. Required fields are marked *