Question Number 66170 by mathmax by abdo last updated on 10/Aug/19
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{sin}\left({x}^{\mathrm{3}} \right){dx} \\ $$
Commented by mathmax by abdo last updated on 10/Aug/19
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{3}} \right){dx}\:\Rightarrow{I}\:=−{Im}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ix}^{\mathrm{3}} } {dx}\right) \\ $$$${changement}\:{ix}^{\mathrm{3}} \:={t}\:{give}\:{x}^{\mathrm{3}} =−{it}\:\Rightarrow{x}=\left(−{it}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\left(−{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:{t}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\Rightarrow{dx}\:=\frac{\mathrm{1}}{\mathrm{3}}\left(−{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:{t}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} \:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{ix}^{\mathrm{3}} } {dx}=\frac{\mathrm{1}}{\mathrm{3}}\left(−{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \int_{\mathrm{0}} ^{\infty} {e}^{−{t}} \:\:{t}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left({e}^{−\frac{{i}\pi}{\mathrm{2}}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:=\frac{\mathrm{1}}{\mathrm{3}}{e}^{−\frac{{i}\pi}{\mathrm{6}}} .\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:=\frac{\mathrm{1}}{\mathrm{3}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{{i}}{\mathrm{2}}\right)\:\Rightarrow \\ $$$${Im}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ix}^{\mathrm{3}} } {dx}\right)\:=−\frac{\mathrm{1}}{\mathrm{6}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\Rightarrow\:\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{3}} \right){dx}\:=\frac{\mathrm{1}}{\mathrm{6}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$