Menu Close

calculate-0-x-e-x-2-log-1-e-x-dx-




Question Number 143860 by mathmax by abdo last updated on 19/Jun/21
calculate ∫_0 ^∞  x e^(−x^2 ) log(1+e^x )dx
calculate0xex2log(1+ex)dx
Answered by mathmax by abdo last updated on 20/Jun/21
Φ=∫_0 ^∞  xe^(−x^2 ) log(1+e^x )dx ⇒Φ=[−(1/2)e^(−x^2 ) log(1+e^x )]_0 ^∞   −∫_0 ^∞ −(1/2)e^(−x^2 ) ×(e^x /(1+e^x ))dx=((log2)/2) +(1/2)∫_0 ^∞   (e^(−x^2 ) /(1+e^(−x) ))dx  but  ∫_0 ^∞  (e^(−x^2 ) /(1+e^(−x) ))dx =∫_0 ^∞ e^(−x^2 ) Σ_(n=0) ^∞  e^(−nx) dx  =Σ_(n=0) ^∞  ∫_0 ^∞  e^(−x^2 −nx) dx =Σ_(n=0) ^∞ ∫_0 ^∞  e^(−(x^2 +2(n/2)x +(n^2 /4)−(n^2 /4)))  dx  =Σ_(n=0) ^∞  e^(n^2 /4)  ∫_0 ^∞  e^(−(x+(n/2))^2 ) dx=Σ_(n=0) ^∞  e^(n^2 /4)  ∫_(n/2) ^∞  e^(−z^2 ) dz  if we put erf(λ)=∫_λ ^∞  e^(−z^2 ) dz  we get   ∫_0 ^∞  (e^(−x^2 ) /(1+e^(−x) ))dx =Σ_(n=0) ^∞  e^(n^2 /4)  erf((n/2)) ⇒  Φ=((log2)/2)+(1/2)Σ_(n=0) ^∞ erf((n/2))e^(n^2 /4)
Φ=0xex2log(1+ex)dxΦ=[12ex2log(1+ex)]0012ex2×ex1+exdx=log22+120ex21+exdxbut0ex21+exdx=0ex2n=0enxdx=n=00ex2nxdx=n=00e(x2+2n2x+n24n24)dx=n=0en240e(x+n2)2dx=n=0en24n2ez2dzifweputerf(λ)=λez2dzweget0ex21+exdx=n=0en24erf(n2)Φ=log22+12n=0erf(n2)en24

Leave a Reply

Your email address will not be published. Required fields are marked *