Menu Close

calculate-0-x-n-3-1-x-2n-dx-with-n-3-




Question Number 67530 by mathmax by abdo last updated on 28/Aug/19
calculate ∫_0 ^∞    (x^(n−3) /(1+x^(2n) ))dx  with n≥3
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{{n}−\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{2}{n}} }{dx}\:\:{with}\:{n}\geqslant\mathrm{3} \\ $$
Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19
let named it J  let change u=x^(2n) ⇔x=u^(1/(2n))   ⇒ dx=(1/(2n))u^((1/(2n))−1) du  J=(1/(2n)) .∫_0 ^∞  (u^((n−3)/(2n)) /(1+u)).u^((1/(2n))−1) du=(1/(2n)). ∫_0 ^∞ (u^((1/2)−(1/n)−1) /(1+u))du=(π/(2nsin((π/2)−(π/n))))=(π/(2ncos((π/n))))
$${let}\:{named}\:{it}\:{J} \\ $$$${let}\:{change}\:{u}={x}^{\mathrm{2}{n}} \Leftrightarrow{x}={u}^{\frac{\mathrm{1}}{\mathrm{2}{n}}} \:\:\Rightarrow\:{dx}=\frac{\mathrm{1}}{\mathrm{2}{n}}{u}^{\frac{\mathrm{1}}{\mathrm{2}{n}}−\mathrm{1}} {du} \\ $$$${J}=\frac{\mathrm{1}}{\mathrm{2}{n}}\:.\int_{\mathrm{0}} ^{\infty} \:\frac{{u}^{\frac{{n}−\mathrm{3}}{\mathrm{2}{n}}} }{\mathrm{1}+{u}}.{u}^{\frac{\mathrm{1}}{\mathrm{2}{n}}−\mathrm{1}} {du}=\frac{\mathrm{1}}{\mathrm{2}{n}}.\:\int_{\mathrm{0}} ^{\infty} \frac{{u}^{\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{{n}}−\mathrm{1}} }{\mathrm{1}+{u}}{du}=\frac{\pi}{\mathrm{2}{nsin}\left(\frac{\pi}{\mathrm{2}}−\frac{\pi}{{n}}\right)}=\frac{\pi}{\mathrm{2}{ncos}\left(\frac{\pi}{{n}}\right)}\: \\ $$
Commented by Abdo msup. last updated on 29/Aug/19
thanks sir.
$${thanks}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *