Menu Close

calculate-0-xarctan-2x-x-2-1-2-dx-




Question Number 135368 by Bird last updated on 12/Mar/21
calculate ∫_0 ^(+∞)   ((xarctan(2x))/((x^2 +1)^2 ))dx
calculate0+xarctan(2x)(x2+1)2dx
Answered by Dwaipayan Shikari last updated on 12/Mar/21
I(a)=∫_0 ^∞ ((xtan^(−1) (ax))/((x^2 +1)^2 ))dx  I′(a)=∫_0 ^∞ (x^2 /((1+a^2 x^2 )^2 (x^2 +1)^2 ))dx=∫_0 ^∞ (1/((1+a^2 x^2 )(1+x^2 )))−(1/((1+a^2 x^2 )(1+x^2 )^2 ))  =(1/(a^2 −1))∫_0 ^∞ (1/(1+x^2 ))−(1/(1+a^2 x^2 ))dx−∫_0 ^∞ (1/((1+x^2 )^2 ))+∫_0 ^∞ (1/((1+a^2 x^2 )(x^2 +1)))dx  =(2/(a^2 −1))((π/2)−(π/(2a)))−(1/2)∫_0 ^∞ (t^((1/2)−1) /((1+t)^((3/2)+(1/2)) ))dt  =(π/(a(a+1)))−(1/2).((Γ((3/2))Γ((1/2)))/(Γ(2)))=(π/(a+1))−(π/4)  I(a)=πlog((a/(a+1)))−(π/4)+C            (π/2)∫_0 ^∞ (x/((x^2 +1)^2 ))dx=(π/4)∫_1 ^∞ (dt/t^2 )=(π/4)  lim_(z→∞) I(z)=−(π/4)+C=(π/4)⇒C=(π/2)  I(a)=πlog(a+1)+(π/4)⇒I(2)=πlog(3)+(π/4)
I(a)=0xtan1(ax)(x2+1)2dxI(a)=0x2(1+a2x2)2(x2+1)2dx=01(1+a2x2)(1+x2)1(1+a2x2)(1+x2)2=1a21011+x211+a2x2dx01(1+x2)2+01(1+a2x2)(x2+1)dx=2a21(π2π2a)120t121(1+t)32+12dt=πa(a+1)12.Γ(32)Γ(12)Γ(2)=πa+1π4I(a)=πlog(aa+1)π4+Cπ20x(x2+1)2dx=π41dtt2=π4limzI(z)=π4+C=π4C=π2I(a)=πlog(a+1)+π4I(2)=πlog(3)+π4

Leave a Reply

Your email address will not be published. Required fields are marked *