calculate-0-xarctan-2x-x-2-1-2-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 135368 by Bird last updated on 12/Mar/21 calculate∫0+∞xarctan(2x)(x2+1)2dx Answered by Dwaipayan Shikari last updated on 12/Mar/21 I(a)=∫0∞xtan−1(ax)(x2+1)2dxI′(a)=∫0∞x2(1+a2x2)2(x2+1)2dx=∫0∞1(1+a2x2)(1+x2)−1(1+a2x2)(1+x2)2=1a2−1∫0∞11+x2−11+a2x2dx−∫0∞1(1+x2)2+∫0∞1(1+a2x2)(x2+1)dx=2a2−1(π2−π2a)−12∫0∞t12−1(1+t)32+12dt=πa(a+1)−12.Γ(32)Γ(12)Γ(2)=πa+1−π4I(a)=πlog(aa+1)−π4+Cπ2∫0∞x(x2+1)2dx=π4∫1∞dtt2=π4limz→∞I(z)=−π4+C=π4⇒C=π2I(a)=πlog(a+1)+π4⇒I(2)=πlog(3)+π4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-Q-0-x-3-e-x-T-1-dx-where-Q-is-assumed-finite-for-T-being-a-positive-constant-and-Q-taking-the-form-Q-KT-n-where-K-constant-and-n-Z-Next Next post: let-x-arctan-x-x-2-3-developp-at-integr-serie- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.