Menu Close

calculate-0-xsin-x-1-x-4-dx-with-real-




Question Number 70237 by mathmax by abdo last updated on 02/Oct/19
calculate ∫_0 ^∞   ((xsin(αx))/(1+x^4 ))dx with α real
calculate0xsin(αx)1+x4dxwithαreal
Commented by mind is power last updated on 02/Oct/19
nice  i deleat my post mistack[  ((zsin(z))/(1+z^4 ))  when  ∣z∣→∞   is not defind  z=re^(ia)  a∈[0,π[  sin(z)=((e^(ire^(ia) ) −e^(ire^(ia) ) )/(2i))  the factor e^(−ire^(ia) ) =e^(−irvos(a)) .e^(rsin(a)) ∣e^(−ire^(ia) ) ∣=e^(rsin(a))  witch is get big as we want  ⇒lim zf(z)⇏0 jordan lemma dont not applie  ∫_(−∞) ^(+∞) f(z)dz≠2iπresid(.....)  i have done it quickly  without seeing what going on Sorry sir
niceideleatmypostmistack[zsin(z)1+z4whenz∣→isnotdefindz=reiaa[0,π[sin(z)=eireiaeireia2ithefactoreireia=eirvos(a).ersin(a)eireia∣=ersin(a)witchisgetbigaswewantlimzf(z)0jordanlemmadontnotapplie+f(z)dz2iπresid(..)ihavedoneitquicklywithoutseeingwhatgoingonSorrysir
Commented by mathmax by abdo last updated on 02/Oct/19
let A =∫_0 ^∞  ((xsin(αx))/(x^4  +1))dx ⇒2A =∫_(−∞) ^(+∞)  ((xsin(αx))/(x^4  +1))dx  =Im(∫_(−∞) ^(+∞)  ((x e^(iαx) )/(x^4  +1))dx)  let ϕ(z)=((z e^(iαz) )/(z^4  +1))  poles of ϕ?  ϕ(z) =((z e^(iαz) )/((z^2 −i)(z^2 +i))) =((z e^(iαz) )/((z−(√i))(z+(√i))(z−(√(−i)))(z+(√(−i)))))  =((z e^(iαz) )/((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) ))) so the poles of ϕ are  +^− e^((iπ)/4)  and +^− e^(−((iπ)/4))   and ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) )=lim_(z→e^((iπ)/4) )    (z−e^((iπ)/4) )ϕ(z)  =((e^((iπ)/4)  e^(iαe^((iπ)/4) ) )/(2e^((iπ)/4) (2i))) =(e^(iα((1/( (√2) ))+(i/( (√2))))) /(4i)) =(1/(4i)) e^((iα)/( (√2)))   e^(−(α/( (√2))))   Res(ϕ,−e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )   (z+e^(−((iπ)/4)) )ϕ(z)  =((−e^(−((iπ)/4))  e^(iα(−e^(−((iπ)/4)) )) )/((−2i)(−2e^(−((iπ)/4)) ))) =(1/(4i)) e^(−iα((1/( (√2)))−(i/( (√2)))))  =−(1/(4i)) e^(−((iα)/( (√( 2))))) e^(−(α/( (√2))))   ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(1/(4i)) e^(−(α/( (√2))))   e^((iα)/( (√2)))    −(1/(4i)) e^(−(α/( (√2))))  e^(−((iα)/( (√( 2))))) }  =(π/2) e^(−(α/( (√2)))) {  2i sin((α/( (√2))))} =iπ e^(−(α/( (√2))))    sin((α/( (√2)))) ⇒  2A =π e^(−(α/( (√2))))  sin((α/( (√2)))) ⇒ A =(π/2) e^(−(α/( (√2))))    sin((α/( (√2)))) .
letA=0xsin(αx)x4+1dx2A=+xsin(αx)x4+1dx=Im(+xeiαxx4+1dx)letφ(z)=zeiαzz4+1polesofφ?φ(z)=zeiαz(z2i)(z2+i)=zeiαz(zi)(z+i)(zi)(z+i)=zeiαz(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)sothepolesofφare+eiπ4and+eiπ4and+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=limzeiπ4(zeiπ4)φ(z)=eiπ4eiαeiπ42eiπ4(2i)=eiα(12+i2)4i=14ieiα2eα2Res(φ,eiπ4)=limzeiπ4(z+eiπ4)φ(z)=eiπ4eiα(eiπ4)(2i)(2eiπ4)=14ieiα(12i2)=14ieiα2eα2+φ(z)dz=2iπ{14ieα2eiα214ieα2eiα2}=π2eα2{2isin(α2)}=iπeα2sin(α2)2A=πeα2sin(α2)A=π2eα2sin(α2).
Commented by mathmax by abdo last updated on 03/Oct/19
nevermind sir.
nevermindsir.

Leave a Reply

Your email address will not be published. Required fields are marked *