calculate-0-xsin-x-1-x-4-dx-with-real- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 70237 by mathmax by abdo last updated on 02/Oct/19 calculate∫0∞xsin(αx)1+x4dxwithαreal Commented by mind is power last updated on 02/Oct/19 niceideleatmypostmistack[zsin(z)1+z4when∣z∣→∞isnotdefindz=reiaa∈[0,π[sin(z)=eireia−eireia2ithefactore−ireia=e−irvos(a).ersin(a)∣e−ireia∣=ersin(a)witchisgetbigaswewant⇒limzf(z)⇏0jordanlemmadontnotapplie∫−∞+∞f(z)dz≠2iπresid(…..)ihavedoneitquicklywithoutseeingwhatgoingonSorrysir Commented by mathmax by abdo last updated on 02/Oct/19 letA=∫0∞xsin(αx)x4+1dx⇒2A=∫−∞+∞xsin(αx)x4+1dx=Im(∫−∞+∞xeiαxx4+1dx)letφ(z)=zeiαzz4+1polesofφ?φ(z)=zeiαz(z2−i)(z2+i)=zeiαz(z−i)(z+i)(z−−i)(z+−i)=zeiαz(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)sothepolesofφare+−eiπ4and+−e−iπ4and∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)}Res(φ,eiπ4)=limz→eiπ4(z−eiπ4)φ(z)=eiπ4eiαeiπ42eiπ4(2i)=eiα(12+i2)4i=14ieiα2e−α2Res(φ,−e−iπ4)=limz→−e−iπ4(z+e−iπ4)φ(z)=−e−iπ4eiα(−e−iπ4)(−2i)(−2e−iπ4)=14ie−iα(12−i2)=−14ie−iα2e−α2⇒∫−∞+∞φ(z)dz=2iπ{14ie−α2eiα2−14ie−α2e−iα2}=π2e−α2{2isin(α2)}=iπe−α2sin(α2)⇒2A=πe−α2sin(α2)⇒A=π2e−α2sin(α2). Commented by mathmax by abdo last updated on 03/Oct/19 nevermindsir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 5-4-x-2-25-x-lt-7-10-x-Next Next post: Let-f-and-g-be-functions-such-that-for-all-real-number-x-and-y-g-f-x-y-f-x-x-y-g-y-Find-the-value-of-g-0-g-1-g-2-g-3-g-2016- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.