Menu Close

calculate-1-1-x-2n-1-2-sinx-dx-with-n-integr-




Question Number 67038 by mathmax by abdo last updated on 22/Aug/19
calculate  ∫_(−1) ^1  (x^(2n) /(1+2^(sinx) ))dx   with n integr.
calculate11x2n1+2sinxdxwithnintegr.
Commented by mathmax by abdo last updated on 22/Aug/19
let A_n =∫_(−1) ^1  (x^(2n) /(1+2^(sinx) ))dx ⇒ A_n =∫_(−1) ^0  (x^(2n) /(1+2^(sinx) ))dx +∫_0 ^1  (x^(2n) /(1+2^(sinx) ))dx but  ∫_(−1) ^0  (x^(2n) /(1+2^(sinx) ))dx =_(x=−t)  ∫_0 ^1  (t^(2n) /(1+2^(−sint) ))dt =∫_0 ^1  ((2^(sint)  t^(2n) )/(2^(sint)  +1))dt ⇒  A_n =∫_0 ^1   (((2^(sint)  t^(2n) )/(1+2^(sint) )) +(t^(2n) /(1+2^(sint) )))dt =∫_0 ^1 t^(2n) (((1+2^(sint) )/(1+2^(sint) )))dt =∫_0 ^1  t^(2n)  dt  [(t^(2n+1) /(2n+1))]_0 ^1  =(1/(2n+1)) ⇒ ★A_n =(1/(2n+1)) ★
letAn=11x2n1+2sinxdxAn=10x2n1+2sinxdx+01x2n1+2sinxdxbut10x2n1+2sinxdx=x=t01t2n1+2sintdt=012sintt2n2sint+1dtAn=01(2sintt2n1+2sint+t2n1+2sint)dt=01t2n(1+2sint1+2sint)dt=01t2ndt[t2n+12n+1]01=12n+1An=12n+1
Answered by mind is power last updated on 22/Aug/19
∫_(−1) ^1 (x^(2n) /(1+2^(sin(x)) ))dx=∫_(−1) ^1 (((−x)^(2n) )/(1+2^(sin(−x)) ))dx=∫_(−1) ^1 (x^(2n) /(1+2^(−sin(x)) ))dx=∫_(−1) ^1 ((2^(sin(x)) x^(2n) )/(1+2^(son(x)) ))  ==>2∫_(−1) ^1 (x^(2n) /(1+2^(sin(x)) )) dx=∫_(−1) ^1 (x^(2n) /(1+2^(sin(x)) ))dx+∫_(−1) ^1 ((x^(2n) 2^(sin(x{) )/(1+2^(sin(x)) ))dx=∫_(−1) ^1 ((x^(2n) +x^(2n) 2^(sin(x))   )/(1+2^(sin(x)) ))=∫_(−1) ^1 x^(2n) dx=(2/(2n+1))  =>∫_(−1) ^1 (x^(2n) /(1+2^(sin(x)) ))dx=(1/(2n+1))
11x2n1+2sin(x)dx=11(x)2n1+2sin(x)dx=11x2n1+2sin(x)dx=112sin(x)x2n1+2son(x)==>211x2n1+2sin(x)dx=11x2n1+2sin(x)dx+11x2n2sin(x{1+2sin(x)dx=11x2n+x2n2sin(x)1+2sin(x)=11x2ndx=22n+1=>11x2n1+2sin(x)dx=12n+1
Commented by mathmax by abdo last updated on 22/Aug/19
thank you sir.
thankyousir.
Commented by mind is power last updated on 23/Aug/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *