Menu Close

calculate-1-3-x-2-x-2-x-1-dx-




Question Number 73181 by mathmax by abdo last updated on 07/Nov/19
calculate ∫_1 ^(3 )  ((x−2)/( (√(x^2 +x+1))))dx
calculate13x2x2+x+1dx
Commented by mathmax by abdo last updated on 07/Nov/19
we have x^2  +x+1 =(x+(1/2))^2  +(3/4)  changement x+(1/2)=((√3)/2)sh(t)give  sh(t)=((2x+1)/( (√3))) ⇒  ∫_1 ^3  ((x−2)/( (√(x^2 +x+1))))dx =∫_(arsh((√3))) ^(argsh((7/( (√3)))))  ((((√3)/2)sh(t)−(1/2)−2)/(((√3)/2)ch(t)))×((√3)/2)ch(t)dt  =∫_(ln((√3)+(√4))) ^(ln((7/( (√3)))+(√(1+((49)/3) )))) (((√3)/2)sh(t)−(5/2))dt  =((√3)/2) ∫_(ln((√3)+2)) ^(ln((7/( (√3) ))+(√(1+((49)/3))))) sh(t)dt−(5/2)(ln((7/( (√3)))+((√(52))/( (√3))))−ln(2+(√3)))  =((√3)/4)[ e^t  +e^(−t) ]_(ln(2+(√3))) ^(ln(((7+(√(52)))/( (√3))))) −(5/2){ln(((7+(√(52)))/( (√3))))−ln(2+(√3))}  =((√3)/4){(((7+(√(52)))/( (√3))))+(((7+(√(52)))/( (√3))))^(−1) −(2+(√3))−(2+(√3))^(−1) }  −(5/2){ln(((7+(√(52)))/( (√3))))−ln(2+(√3))}
wehavex2+x+1=(x+12)2+34changementx+12=32sh(t)givesh(t)=2x+1313x2x2+x+1dx=arsh(3)argsh(73)32sh(t)12232ch(t)×32ch(t)dt=ln(3+4)ln(73+1+493)(32sh(t)52)dt=32ln(3+2)ln(73+1+493)sh(t)dt52(ln(73+523)ln(2+3))=34[et+et]ln(2+3)ln(7+523)52{ln(7+523)ln(2+3)}=34{(7+523)+(7+523)1(2+3)(2+3)1}52{ln(7+523)ln(2+3)}
Answered by petrochengula last updated on 07/Nov/19
considerI= ∫((x−2)/( (√(x^2 +x+1))))dx  =(1/2)∫((2(x−2))/( (√(x^2 +x+1))))dx=(1/2)∫((2x+1)/( (√(x^2 +x+1))))dx−(1/2)∫(5/( (√(x^2 +x+1))))dx  =(√(x^2 +x+1))−(5/2)∫(1/( (√(x^2 +x+(1/4)+(3/4)))))dx  =(√(x^2 +x+1))−(5/2)∫(1/( (√((x+(1/2))^2 +(3/4)))))  consider ∫(1/( (√((x+(1/2))^2 +(3/4)))))dx  =∫(1/( (√((3/4)((4/3)(((2x+1)/2))^2 +1)))))dx  =(2/( (√3)))∫(1/( (√((((2x+1)/( (√3))))^2 +1))))dx  let sinhθ=((2x+1)/( (√3)))⇒(√3)sinhθ=2x+1⇒(√3)coshθdθ=2(dx/dθ)⇒dx=((√3)/2)coshθdθ=dx  =∫dθ  =θ+C  =sinh^(−1) (((2x+1)/( (√3))))+c  ∫((x−2)/( (√(x^2 +x+1))))dx=(√(x^2 +x+1))−(5/2)sinh^(−1) (((2x+1)/( (√3))))+C  ∫_1 ^3 ((x−2)/( (√(x^2 +x+1))))dx=(√(13))−(5/2)sinh^(−1) ((7/( (√3))))−(√3)+(5/2)sinh^(−1) ((3/( (√3))))
considerI=x2x2+x+1dx=122(x2)x2+x+1dx=122x+1x2+x+1dx125x2+x+1dx=x2+x+1521x2+x+14+34dx=x2+x+1521(x+12)2+34consider1(x+12)2+34dx=134(43(2x+12)2+1)dx=231(2x+13)2+1dxletsinhθ=2x+133sinhθ=2x+13coshθdθ=2dxdθdx=32coshθdθ=dx=dθ=θ+C=sinh1(2x+13)+cx2x2+x+1dx=x2+x+152sinh1(2x+13)+C13x2x2+x+1dx=1352sinh1(73)3+52sinh1(33)
Commented by petrochengula last updated on 07/Nov/19
please check if it is correct
pleasecheckifitiscorrect

Leave a Reply

Your email address will not be published. Required fields are marked *