calculate-1-3-x-2-x-2-x-1-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 73181 by mathmax by abdo last updated on 07/Nov/19 calculate∫13x−2x2+x+1dx Commented by mathmax by abdo last updated on 07/Nov/19 wehavex2+x+1=(x+12)2+34changementx+12=32sh(t)givesh(t)=2x+13⇒∫13x−2x2+x+1dx=∫arsh(3)argsh(73)32sh(t)−12−232ch(t)×32ch(t)dt=∫ln(3+4)ln(73+1+493)(32sh(t)−52)dt=32∫ln(3+2)ln(73+1+493)sh(t)dt−52(ln(73+523)−ln(2+3))=34[et+e−t]ln(2+3)ln(7+523)−52{ln(7+523)−ln(2+3)}=34{(7+523)+(7+523)−1−(2+3)−(2+3)−1}−52{ln(7+523)−ln(2+3)} Answered by petrochengula last updated on 07/Nov/19 considerI=∫x−2x2+x+1dx=12∫2(x−2)x2+x+1dx=12∫2x+1x2+x+1dx−12∫5x2+x+1dx=x2+x+1−52∫1x2+x+14+34dx=x2+x+1−52∫1(x+12)2+34consider∫1(x+12)2+34dx=∫134(43(2x+12)2+1)dx=23∫1(2x+13)2+1dxletsinhθ=2x+13⇒3sinhθ=2x+1⇒3coshθdθ=2dxdθ⇒dx=32coshθdθ=dx=∫dθ=θ+C=sinh−1(2x+13)+c∫x−2x2+x+1dx=x2+x+1−52sinh−1(2x+13)+C∫13x−2x2+x+1dx=13−52sinh−1(73)−3+52sinh−1(33) Commented by petrochengula last updated on 07/Nov/19 pleasecheckifitiscorrect Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-sin-x-tan-x-1-x-2-1-3-1-1-sin-x-1-Next Next post: calculate-0-lnx-x-1-3-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.