Menu Close

calculate-1-e-x-e-2x-dx-




Question Number 142365 by mathmax by abdo last updated on 30/May/21
calculate ∫  (√(1+e^x  +e^(2x) ))dx
calculate1+ex+e2xdx
Answered by MJS_new last updated on 05/Jun/21
∫(√(e^(2x) +e^x +1))dx=       [t=e^x +(1/2) → dx=(dt/e^x )]  =∫((√(4t^2 +3))/(2t−1))dt=       [u=((2t+(√(4t^2 +3)))/( (√3))) → dt=((√(4t^2 +3))/(2u))du]  =((3(√3))/4)∫(((u^2 +1)^2 )/(u^2 (u−(√3))(3u+(√3))))du=  =∫(((√3)/4)−((√3)/(4u^2 ))+(1/(2u))+(1/(u−(√3)))−(3/(3u+(√3))))du=  =(((√3)u)/4)+((√3)/(4u))+((ln u)/2)+ln (u−(√3)) −ln (3u+(√3)) =  =(((√3)(u^2 +1))/(4u))+(1/2)ln ((u(u−(√3))^2 )/((3u+(√3))^2 )) =  ...  =(√(e^(2x) +e^x +1))−x+(1/2)ln (2e^(3x) −3e^(2x) −8+2(e^(2x) −2e^x +4)(√(e^(2x) +e^x +1))) +C
e2x+ex+1dx=[t=ex+12dx=dtex]=4t2+32t1dt=[u=2t+4t2+33dt=4t2+32udu]=334(u2+1)2u2(u3)(3u+3)du==(3434u2+12u+1u333u+3)du==3u4+34u+lnu2+ln(u3)ln(3u+3)==3(u2+1)4u+12lnu(u3)2(3u+3)2==e2x+ex+1x+12ln(2e3x3e2x8+2(e2x2ex+4)e2x+ex+1)+C

Leave a Reply

Your email address will not be published. Required fields are marked *