Menu Close

Calculate-1-I-c-zdz-z-1-2-z-2-2z-1-2i-C-z-z-2-2-J-c-ch-z-dz-z-e-z-1-C-z-z-3i-4-3-K-c-sin-z-dz-z-3-z-1-2-C-z-z-2-




Question Number 131094 by Chhing last updated on 01/Feb/21
       Calculate    1/ I = ∮_c^+  ((zdz)/((z−1)^2 (z^2 −2z+1−2i)))  ,C={z/∣z∣=2}     2/ J =∮_c^+  ((ch(z)dz)/(z(e^z −1)))  ,  C={z/∣z−3i∣=4}    3/ K=∮_c^+  ((sin(z)dz)/(z^3 (z+1)^2 ))  , C={z/∣z∣=2}
Calculate1/I=c+zdz(z1)2(z22z+12i),C={z/z∣=2}2/J=c+ch(z)dzz(ez1),C={z/z3i∣=4}3/K=c+sin(z)dzz3(z+1)2,C={z/z∣=2}
Commented by mathmax by abdo last updated on 02/Feb/21
sir what do you mean by C^+  ? define it...
sirwhatdoyoumeanbyC+?defineit
Answered by mathmax by abdo last updated on 01/Feb/21
1) I =∫_C^+     ((zdz)/((z−1)^2 (z^2 −2z+1−2i))) let ϕ(z)=(z/((z−1)^2 (z^2 −2z+1−2i)))  z^2 −2z+1−2i=0 ⇒Δ^′  =1−(1−2i)=2i ⇒z_1 =1+(√(2i))=1+(√2)e^((iπ)/4)   z_2 =1−(√2)e^((iπ)/4)   we have z_1 =1+(√2){(1/( (√2)))+(i/( (√2)))}=1+1+i=2+i ⇒  ∣z_1 ∣=(√(4+1))=(√5)>(√2)  and z_2 =1−(√2){(1/( (√2)))−(i/( (√2)))} =1−1+i=i ⇒∣z_1 ∣<2  z_2  ∈C^+    also z=1 is double pole for ϕ ⇒  I =∫_C^+   ϕ(z)dz =2iπ{Res(ϕ,1) +Res(ϕ,i)}  Res(ϕ,1) =lim_(z→1 )  (1/((2−1)!)){(z−1)^2 ϕ(z)}^((1))   =lim_(z→1) ((z/(z^2 −2z+1−2i)))^((1))    =lim_(z→1) (((z^2 −2z+1−2i−z(2z−2))/((z^2 −2z+1−2i)^2 )))  =((1−2+1−2i−o)/((1−2+1−2i)^2 ))=((−2i)/((−2i)^2 ))=((−2i)/(−4)) =(i/2)  Res(ϕ,i)=lim_(z→i) (z−i)ϕ(z) =lim_(z→i) (z−i)(z/((z−1)^2 (z−i)(z−2−i)))  =lim_(z→i)   (z/((z−1)^2 (z−2−i)))=(i/((i−1)^2 (−2))) =((−i)/(2(−2i)))=(1/4) ⇒  I =2iπ{(i/2)+(1/4)} =−π +((iπ)/2)
1)I=C+zdz(z1)2(z22z+12i)letφ(z)=z(z1)2(z22z+12i)z22z+12i=0Δ=1(12i)=2iz1=1+2i=1+2eiπ4z2=12eiπ4wehavez1=1+2{12+i2}=1+1+i=2+iz1∣=4+1=5>2andz2=12{12i2}=11+i=i⇒∣z1∣<2z2C+alsoz=1isdoublepoleforφI=C+φ(z)dz=2iπ{Res(φ,1)+Res(φ,i)}Res(φ,1)=limz11(21)!{(z1)2φ(z)}(1)=limz1(zz22z+12i)(1)=limz1(z22z+12iz(2z2)(z22z+12i)2)=12+12io(12+12i)2=2i(2i)2=2i4=i2Res(φ,i)=limzi(zi)φ(z)=limzi(zi)z(z1)2(zi)(z2i)=limziz(z1)2(z2i)=i(i1)2(2)=i2(2i)=14I=2iπ{i2+14}=π+iπ2