Menu Close

calculate-1-i-n-and-1-j-n-min-i-j-




Question Number 73028 by mathmax by abdo last updated on 05/Nov/19
calculate Σ_(1≤i≤n and 1≤j≤n)   min(i,j)
calculate1inand1jnmin(i,j)
Answered by mind is power last updated on 05/Nov/19
=Σ_(i=1) ^n i+2Σ_(i=2) ^n Σ_(j=1) ^(i−1) (j)  =Σ_(i=1) ^n i+2Σ_(i=2) ^n .(((i−1).i)/2)=Σ_(i=1) ^n i−Σ_(i=2) ^n i+Σ_(i=2) ^n i^2 =1+Σ_(i=2) ^n i^2 =Σ_(i=1) ^n i^2 =((n(n+1)(2n+1))/6)
=ni=1i+2ni=2i1j=1(j)=ni=1i+2ni=2.(i1).i2=ni=1ini=2i+ni=2i2=1+ni=2i2=ni=1i2=n(n+1)(2n+1)6
Answered by mr W last updated on 05/Nov/19
=2×[n×1+(n−1)×2+...+1×n]−(1+2+...+n)  =2×Σ_(k=0) ^(n−1) (n−k)(k+1)−(1+2+...+n)  =2×Σ_(k=0) ^(n−1) [(n−1)k+n−k^2 ]−(1+2+...+n)  =2×[(n−1)((n(n−1))/2)+n^2 −(((n−1)n(2n−1))/6)]−((n(n+1))/2)  =((n(n+1)(2n+1))/6)
=2×[n×1+(n1)×2++1×n](1+2++n)=2×n1k=0(nk)(k+1)(1+2++n)=2×n1k=0[(n1)k+nk2](1+2++n)=2×[(n1)n(n1)2+n2(n1)n(2n1)6]n(n+1)2=n(n+1)(2n+1)6
Commented by mathmax by abdo last updated on 05/Nov/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *