Menu Close

calculate-1-k-1-n-k-2-n-1-k-2-1-i-j-n-ij-




Question Number 73036 by mathmax by abdo last updated on 05/Nov/19
calculate 1) Σ_(k=1) ^n  k^2 (n+1−k)  2)Σ_(1≤i≤j≤n)  ij
calculate1)k=1nk2(n+1k)2)1ijnij
Commented by mathmax by abdo last updated on 06/Nov/19
1) Σ_(k=1) ^n k^2 (n+1−k) =(n+1)Σ_(k=1) ^n k^2  −Σ_(k=1) ^n  k^3   =(n+1)×((n(n+1)(2n+1))/6)−((n^2 (n+1)^2 )/4)  =((n(n+1))/2){(((n+1)(2n+1))/3)−((n(n+1))/2)}  =((n(n+1))/2){((2n^2 +3n+1)/3)−((n^2  +n)/2)}  =((n(n+1))/(12))(4n^2  +6n+2−3n^2 −3n)  =((n(n+1))/(12))(n^2 +3n+2) =((n(n+1)(n^2  +3n+2))/(12))
1)k=1nk2(n+1k)=(n+1)k=1nk2k=1nk3=(n+1)×n(n+1)(2n+1)6n2(n+1)24=n(n+1)2{(n+1)(2n+1)3n(n+1)2}=n(n+1)2{2n2+3n+13n2+n2}=n(n+1)12(4n2+6n+23n23n)=n(n+1)12(n2+3n+2)=n(n+1)(n2+3n+2)12
Commented by mr W last updated on 06/Nov/19
n^2 +3n+2=(n+1)(n+2)  ⇒we have the same result.
n2+3n+2=(n+1)(n+2)wehavethesameresult.
Commented by mathmax by abdo last updated on 06/Nov/19
yes sir.
yessir.
Answered by mr W last updated on 06/Nov/19
Σk^2 (n+1−k)  =(n+1)((n(n+1)(2n+1))/6)−((n^2 (n+1)^2 )/4)  =((n(n+1)^2 (n+2))/(12))    ΣΣij=Σi((n(n+1))/2)=((n^2 (n+1)^2 )/4)
Σk2(n+1k)=(n+1)n(n+1)(2n+1)6n2(n+1)24=n(n+1)2(n+2)12ΣΣij=Σin(n+1)2=n2(n+1)24

Leave a Reply

Your email address will not be published. Required fields are marked *