Menu Close

calculate-1-x-3-1-x-6-dx-




Question Number 67528 by mathmax by abdo last updated on 28/Aug/19
calculate ∫_(−∞) ^(+∞)    ((1+x^3 )/(1+x^6 ))dx
calculate+1+x31+x6dx
Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19
let named it K  when changing   x=−u        K=∫_(−∞) ^∞   ((1−u^3 )/(1+u^6 )) du   So  2K=∫_(−∞) ^∞ (( 2du)/(1+u^6 ))  =4∫_0 ^∞  (du/(1+u^6 ))      change  u=v^(1/6)    ⇒ du = (v^((1/6)−1) /6)dv   K=(2/6)∫_0 ^∞ ((  v^((1/6)−1) )/(1+v)) dv=(π/(3sin((π/6))))=((2π)/3)
letnameditKwhenchangingx=uK=1u31+u6duSo2K=2du1+u6=40du1+u6changeu=v16du=v1616dvK=260v1611+vdv=π3sin(π6)=2π3
Commented by mathmax by abdo last updated on 29/Aug/19
thank you sir.
thankyousir.
Commented by mathmax by abdo last updated on 29/Aug/19
I =∫_(−∞) ^(+∞)  ((1+x^3 )/(1+x^6 ))dx ⇒ I =∫_(−∞) ^(+∞)  (dx/(1+x^6 )) +∫_(−∞) ^(+∞)  (x^3 /(1+x^6 ))dx  but ∫_(−∞) ^(+∞)  (x^3 /(1+x^6 ))dx =0  (the function is odd) ⇒I =2∫_0 ^∞ (dx/(1+x^6 ))  cha7gement x =t^(1/6)  give I =2 ∫_0 ^∞    (1/(1+t))×(1/6)t^((1/6)−1) dt  =(1/3)∫_0 ^∞    (t^((1/6)−1) /(1+t)) dt=(1/3) (π/(sin((π/6)))) =(π/(3×(1/2))) =((2π)/3) .
I=+1+x31+x6dxI=+dx1+x6++x31+x6dxbut+x31+x6dx=0(thefunctionisodd)I=20dx1+x6cha7gementx=t16giveI=2011+t×16t161dt=130t1611+tdt=13πsin(π6)=π3×12=2π3.

Leave a Reply

Your email address will not be published. Required fields are marked *