Question Number 65665 by mathmax by abdo last updated on 01/Aug/19
$${calculate}\:\int_{−\mathrm{2}} ^{+\infty} \:\:\frac{{e}^{−{x}} }{\:\sqrt{{x}+\mathrm{2}}}\:{dx} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 02/Aug/19
$${let}\:{I}\:=\int_{−\mathrm{2}} ^{+\infty} \:\:\frac{{e}^{−{x}} }{\:\sqrt{{x}+\mathrm{2}}}{dx}\:\:{changement}\:\sqrt{{x}+\mathrm{2}}={t}\:{give}\:{x}+\mathrm{2}={t}^{\mathrm{2}} \:\Rightarrow \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{e}^{−\left({t}^{\mathrm{2}} −\mathrm{2}\right)} }{{t}}\left(\mathrm{2}{t}\right){dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} +\mathrm{2}\:} {dt}\:\:={e}^{\mathrm{2}} \int_{−\infty} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} } {dt} \\ $$$$={e}^{\mathrm{2}} \sqrt{\pi} \\ $$