Menu Close

calculate-7-3-x-1-dx-x-2-2x-3-




Question Number 66337 by mathmax by abdo last updated on 12/Aug/19
calculate ∫_(−7) ^(−3)   (((x−1)dx)/( (√(x^2  +2x−3))))
calculate73(x1)dxx2+2x3
Commented by Prithwish sen last updated on 13/Aug/19
lim_(ε→−3) ∫_(−7) ^ε ((√(x−1))/( (√(x+3)))) dx  = lim_(ε→−3)  [(√((x−1)(x+3) ))−4ln∣(√(x+3))+(√(x−1))∣]_(−7) ^ε   =4ln∣1+(√2)∣−4(√2)  please check.
limϵ37ϵx1x+3dx=limϵ3[(x1)(x+3)4lnx+3+x1]7ϵ=4ln1+242pleasecheck.
Commented by mathmax by abdo last updated on 13/Aug/19
let I =∫_(−7) ^(−3)   ((x−1)/( (√(x^2  +2x−3))))dx  we have  x^2  +2x−3 =x^2  +2x+1−4 =(x+1)^2 −4 =(x+1−2)(x+1+2)  =(x−1)(x+3) ⇒ I =∫_(−7) ^(−3)  ((x−1)/( (√((x−1)(x+3)))))dx  =∫_(−7) ^(−3)  ((x−1)/( (√((1−x)(−x−3)))))dx  =−∫_(−7) ^(−3)  (((√(1−x)))^2 )/( (√(1−x))(√(−x−3))))dx  =−∫_(−7) ^(−3)    ((√(1−x))/( (√(−x−3)))) dx  we use the changement (√(−x−3))=t ⇒  −x−3=t^2  ⇒−x =3+t^2  ⇒x =−3−t^2  ⇒  I =−∫_2 ^0  ((√(1+3+t^2 ))/t)(−2t)dt =−2∫_0 ^2 (√(t^2  +4)) dt  =_(t=2sh(u))    −2∫_0 ^(ln(1+(√2))) 2ch(t)(2ch(t)dt =−8 ∫_0 ^(ln(1+(√2)))  ((ch(2t)−1)/2)dt  =−4 ∫_0 ^(ln(1+(√2))) (ch(2t)−1)dt=4ln(1+(√2))−4[(1/2)sh(2t)]_0 ^(ln(1+(√2)))   =4ln(1+(√2))−2[((e^(2t) −e^(−2t) )/2)]_0 ^(ln(1+(√2)))  ⇒  I =4ln(1+(√2))−{(1+(√2))^2 −(1/((1+(√2))^2 ))}
letI=73x1x2+2x3dxwehavex2+2x3=x2+2x+14=(x+1)24=(x+12)(x+1+2)=(x1)(x+3)I=73x1(x1)(x+3)dx=73x1(1x)(x3)dx=731x)21xx3dx=731xx3dxweusethechangementx3=tx3=t2x=3+t2x=3t2I=201+3+t2t(2t)dt=202t2+4dt=t=2sh(u)20ln(1+2)2ch(t)(2ch(t)dt=80ln(1+2)ch(2t)12dt=40ln(1+2)(ch(2t)1)dt=4ln(1+2)4[12sh(2t)]0ln(1+2)=4ln(1+2)2[e2te2t2]0ln(1+2)I=4ln(1+2){(1+2)21(1+2)2}

Leave a Reply

Your email address will not be published. Required fields are marked *