Menu Close

calculate-A-0-pi-2-dx-2-cos-sinx-pi-lt-lt-pi-




Question Number 78271 by msup trace by abdo last updated on 15/Jan/20
calculate A_θ  =∫_0 ^(π/2)   (dx/(2+cosθ sinx))  −π<θ<π
calculateAθ=0π2dx2+cosθsinxπ<θ<π
Commented by mathmax by abdo last updated on 19/Jan/20
 A(θ)=∫_0 ^(π/2)  (dx/(2 +cosθ sinx)) ⇒A(θ)=_(tan((x/2))=t)   ∫_0 ^(1 )  ((2dt)/((1+t^2 )(2+cosθ((2t)/(1+t^2 )))))  =∫_0 ^1  ((2dt)/(2+2t^2 +2t cosθ)) =∫_0 ^1  (dt/(t^2  +t cosθ +1)) =∫_0 ^1  (dt/(t^2  +2t((cosθ)/2) +((cos^2 θ)/4) +1−((cos^2 θ)/4)))  =∫_0 ^1  (dt/((t+((cosθ)/2))^2  +((4−cos^2 θ)/4))) =_(t+((cosθ)/2)=((√(4−cos^2 θ))/2)u ⇒u=((2t+cosθ)/( (√(4−cos^2 θ)))))   =∫_((cosθ)/( (√(4−cos^2 θ)))) ^((2+cosθ)/( (√(4−cos^2 θ))))      (1/(((4−cos^2 θ)/4)(1+u^2 )))×((√(4−cos^2 θ))/2)du  =2 ∫_((cosθ)/( (√(4−cos^2 θ)))) ^((2+cosθ)/( (√(4−cos^2 θ))))     (du/(1+u^2 )) =2 [arctan(u)]_((cosθ)/( (√(4−cos^2 θ)))) ^((2+cosθ)/( (√(4−cos^2 θ))))   =2{ arctan(((2+cosθ)/( (√(4−cos^2 θ)))))−arctan(((cosθ)/( (√(4−cos^2 θ)))))}.
A(θ)=0π2dx2+cosθsinxA(θ)=tan(x2)=t012dt(1+t2)(2+cosθ2t1+t2)=012dt2+2t2+2tcosθ=01dtt2+tcosθ+1=01dtt2+2tcosθ2+cos2θ4+1cos2θ4=01dt(t+cosθ2)2+4cos2θ4=t+cosθ2=4cos2θ2uu=2t+cosθ4cos2θ=cosθ4cos2θ2+cosθ4cos2θ14cos2θ4(1+u2)×4cos2θ2du=2cosθ4cos2θ2+cosθ4cos2θdu1+u2=2[arctan(u)]cosθ4cos2θ2+cosθ4cos2θ=2{arctan(2+cosθ4cos2θ)arctan(cosθ4cos2θ)}.

Leave a Reply

Your email address will not be published. Required fields are marked *