Question Number 78271 by msup trace by abdo last updated on 15/Jan/20
$${calculate}\:{A}_{\theta} \:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{2}+{cos}\theta\:{sinx}} \\ $$$$−\pi<\theta<\pi \\ $$
Commented by mathmax by abdo last updated on 19/Jan/20
$$\:{A}\left(\theta\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\mathrm{2}\:+{cos}\theta\:{sinx}}\:\Rightarrow{A}\left(\theta\right)=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}\:} \:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{2}+{cos}\theta\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}{dt}}{\mathrm{2}+\mathrm{2}{t}^{\mathrm{2}} +\mathrm{2}{t}\:{cos}\theta}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{{t}^{\mathrm{2}} \:+{t}\:{cos}\theta\:+\mathrm{1}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{t}\frac{{cos}\theta}{\mathrm{2}}\:+\frac{{cos}^{\mathrm{2}} \theta}{\mathrm{4}}\:+\mathrm{1}−\frac{{cos}^{\mathrm{2}} \theta}{\mathrm{4}}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\left({t}+\frac{{cos}\theta}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}−{cos}^{\mathrm{2}} \theta}{\mathrm{4}}}\:=_{{t}+\frac{{cos}\theta}{\mathrm{2}}=\frac{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}{\mathrm{2}}{u}\:\Rightarrow{u}=\frac{\mathrm{2}{t}+{cos}\theta}{\:\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} \\ $$$$=\int_{\frac{{cos}\theta}{\:\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} ^{\frac{\mathrm{2}+{cos}\theta}{\:\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} \:\:\:\:\:\frac{\mathrm{1}}{\frac{\mathrm{4}−{cos}^{\mathrm{2}} \theta}{\mathrm{4}}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}×\frac{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}{\mathrm{2}}{du} \\ $$$$=\mathrm{2}\:\int_{\frac{{cos}\theta}{\:\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} ^{\frac{\mathrm{2}+{cos}\theta}{\:\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} \:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\mathrm{2}\:\left[{arctan}\left({u}\right)\right]_{\frac{{cos}\theta}{\:\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} ^{\frac{\mathrm{2}+{cos}\theta}{\:\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} \\ $$$$=\mathrm{2}\left\{\:{arctan}\left(\frac{\mathrm{2}+{cos}\theta}{\:\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}\right)−{arctan}\left(\frac{{cos}\theta}{\:\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}\right)\right\}. \\ $$