Menu Close

calculate-a-b-0-e-ax-2-x-2-b-2-2-dx-with-a-gt-0-and-b-gt-0-




Question Number 143083 by Mathspace last updated on 09/Jun/21
calculate Ψ(a,b)=∫_0 ^∞  (e^(−ax^2 ) /((x^2  +b^2 )^2 ))dx  with a>0 and b>0
calculateΨ(a,b)=0eax2(x2+b2)2dxwitha>0andb>0
Answered by Olaf_Thorendsen last updated on 10/Jun/21
f_b (a) = Ψ(a,b) = ∫_0 ^∞ (e^(−ax^2 ) /((x^2 +b^2 )^2 )) dx  f_b ′(a) = (∂Ψ/∂a)(a,b) = −∫_0 ^∞ ((x^2 e^(−ax^2 ) )/((x^2 +b^2 )^2 )) dx  f_b ′′(a) = (∂^2 Ψ/∂a^2 )(a,b) = +∫_0 ^∞ ((x^4 e^(−ax^2 ) )/((x^2 +b^2 )^2 )) dx    f_b ′′(a)−2b^2 f_b ′(a)+b^4 f_b (a)  = ∫_0 ^∞ (((x^4 +2b^2 x^2 +b^4 )e^(−ax^2 ) )/((x^2 +b^2 )^2 )) dx  = ∫_0 ^∞ (((x^2 +b^2 )^2 e^(−ax^2 ) )/((x^2 +b^2 )^2 )) dx  = ∫_0 ^∞ e^(−ax^2 ) dx  = (1/( (√a)))∫_0 ^∞ e^(−t^2 ) dt  =(1/2) (√(π/a))((2/( (√π)))∫_0 ^∞ e^(−t^2 ) dt)  =(1/2) (√(π/a))    f_b ′′(a)−2b^2 f_b ′(a)+b^4 f_b (a) = (1/2)(√(π/a))    f_b (a) = Ψ(a,b) =  (c_1 +c_2 a)e^(ab^2 ) +((√π)/2)e^(ab^2 ) [aΓ((1/2),b^2 a)+((Γ((3/2),ab^2 ))/b^3 )]  ...to be continued...
fb(a)=Ψ(a,b)=0eax2(x2+b2)2dxfb(a)=Ψa(a,b)=0x2eax2(x2+b2)2dxfb(a)=2Ψa2(a,b)=+0x4eax2(x2+b2)2dxfb(a)2b2fb(a)+b4fb(a)=0(x4+2b2x2+b4)eax2(x2+b2)2dx=0(x2+b2)2eax2(x2+b2)2dx=0eax2dx=1a0et2dt=12πa(2π0et2dt)=12πafb(a)2b2fb(a)+b4fb(a)=12πafb(a)=Ψ(a,b)=(c1+c2a)eab2+π2eab2[aΓ(12,b2a)+Γ(32,ab2)b3]tobecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *