Menu Close

calculate-A-n-0-dx-x-2-1-x-2-2-x-2-n-with-n-integr-and-n-1-




Question Number 71663 by mathmax by abdo last updated on 18/Oct/19
calculate A_n =∫_0 ^∞  (dx/((x^2 +1)(x^2 +2)....(x^2  +n)))  with n integr and n≥1
calculateAn=0dx(x2+1)(x2+2).(x2+n)withnintegrandn1
Commented by mathmax by abdo last updated on 18/Oct/19
we have 2A_n =∫_(−∞) ^(+∞)  (dx/((x^2 +1)(x^2 +2)..(x^2 +n))) let   ϕ(z)=(1/((z^2 +1)(z^2 +2)...(z^2  +n))) =(1/(Π_(k=1) ^n (z^2 +k)))  =(1/(Π_(k=1) ^n (z−i(√k))(z+i(√k))))  so the poles of ϕ are +^− i(√k)  and ∫_(−∞) ^(+∞) ϕ(z)dz =2iπΣ_(k=1) ^n  Res(ϕ,i(√k))  Res(ϕ,i(√k)) =lim_(z→i(√k))    (z−i(√k))ϕ(z)  =   (1/(Π_(k=1) ^n (2i(√k))Π_(j=1and j≠k) ^n (i(√k)−i(√j)))) =(1/((2i)^n (√(n!))Π_(j=1 and j≠k) ^n (i(√k)−i(√j)))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/((2i)^n (√(n!))Π_(j=1) ^n (i(√k)−i(√j)))) ⇒  A_n =Σ_(k=1) ^n ((iπ)/((2i)^n (√(n!))Π_(j=1and j≠k) ^n ( i(√k)−i(√j))))
wehave2An=+dx(x2+1)(x2+2)..(x2+n)letφ(z)=1(z2+1)(z2+2)(z2+n)=1k=1n(z2+k)=1k=1n(zik)(z+ik)sothepolesofφare+ikand+φ(z)dz=2iπk=1nRes(φ,ik)Res(φ,ik)=limzik(zik)φ(z)=1k=1n(2ik)j=1andjkn(ikij)=1(2i)nn!j=1andjkn(ikij)+φ(z)dz=2iπ(2i)nn!j=1n(ikij)An=k=1niπ(2i)nn!j=1andjkn(ikij)
Answered by mind is power last updated on 18/Oct/19
(1/((x^2 +1).....(x^2 +n)))=Σ_(k=1) ^n ((a_k /((x−i(√k))))+(b_k /((x+i(√k))))  a_k =lim_ (x−i(√k)).(1/((x^2 +1)......(x^2 +n)))  =Π_(l=1,l≠k) ^n (1/(2i(√k).(l−k)))  b_k =Π_(l=1,l≠k) ^n (1/(−2i(√k)(l−k)))  (1/((x^2 +1).....(x^2 +n)))=Σ_(k=1) ^n (Π_(l=1,l≠k) ^n (1/(2i(√k)(l−k)))(.(1/(x−i(√k)))−(1/(x+i(√k))))  =Σ_(k=1) ^n (Π_(l=1,k≠l) ^n (1/((l−k)(x^2 +k))))  A_n =Σ_(k=1) ^n Π_(l=1,l≠k) ^n (1/((l−k)))∫_0 ^(+∞) (dx/(x^2 +k))  ∫(dx/(x^2 +k))=(1/( (√k))).tan^(−1) ((x/( (√k))))+c  ∫_0 ^(+∞) (dx/(x^2 +k))=(π/(2(√k)))  A_n =Σ_(k=1) ^n Π_(l=1,l≠k) ^n (π/(2(√k).(l−k)))
1(x2+1)..(x2+n)=nk=1(ak(xik)+bk(x+ik)ak=lim(xik).1(x2+1)(x2+n)=nl=1,lk12ik.(lk)bk=nl=1,lk12ik(lk)1(x2+1)..(x2+n)=nk=1(nl=1,lk12ik(lk)(.1xik1x+ik)=nk=1(nl=1,kl1(lk)(x2+k))An=nk=1nl=1,lk1(lk)+0dxx2+kdxx2+k=1k.tan1(xk)+c0+dxx2+k=π2kAn=nk=1nl=1,lkπ2k.(lk)
Commented by mathmax by abdo last updated on 18/Oct/19
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *