calculate-A-n-0-dx-x-2-1-x-2-2-x-2-n-with-n-integr-and-n-1- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 71663 by mathmax by abdo last updated on 18/Oct/19 calculateAn=∫0∞dx(x2+1)(x2+2)….(x2+n)withnintegrandn⩾1 Commented by mathmax by abdo last updated on 18/Oct/19 wehave2An=∫−∞+∞dx(x2+1)(x2+2)..(x2+n)letφ(z)=1(z2+1)(z2+2)…(z2+n)=1∏k=1n(z2+k)=1∏k=1n(z−ik)(z+ik)sothepolesofφare+−ikand∫−∞+∞φ(z)dz=2iπ∑k=1nRes(φ,ik)Res(φ,ik)=limz→ik(z−ik)φ(z)=1∏k=1n(2ik)∏j=1andj≠kn(ik−ij)=1(2i)nn!∏j=1andj≠kn(ik−ij)⇒∫−∞+∞φ(z)dz=2iπ(2i)nn!∏j=1n(ik−ij)⇒An=∑k=1niπ(2i)nn!∏j=1andj≠kn(ik−ij) Answered by mind is power last updated on 18/Oct/19 1(x2+1)…..(x2+n)=∑nk=1(ak(x−ik)+bk(x+ik)ak=lim(x−ik).1(x2+1)……(x2+n)=∏nl=1,l≠k12ik.(l−k)bk=∏nl=1,l≠k1−2ik(l−k)1(x2+1)…..(x2+n)=∑nk=1(∏nl=1,l≠k12ik(l−k)(.1x−ik−1x+ik)=∑nk=1(∏nl=1,k≠l1(l−k)(x2+k))An=∑nk=1∏nl=1,l≠k1(l−k)∫+∞0dxx2+k∫dxx2+k=1k.tan−1(xk)+c∫0+∞dxx2+k=π2kAn=∑nk=1∏nl=1,l≠kπ2k.(l−k) Commented by mathmax by abdo last updated on 18/Oct/19 thankyousir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: ln-sinx-dx-Next Next post: 0-pi-2-tan-2-1-2tan-2-2-cos-cos- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.