Menu Close

calculate-arctan-2x-1-x-2-3-2-dx-




Question Number 77995 by mathmax by abdo last updated on 12/Jan/20
calculate ∫_(−∞) ^(+∞)  ((arctan(2x+1))/((x^2 +3)^2 ))dx
calculate+arctan(2x+1)(x2+3)2dx
Commented by msup trace by abdo last updated on 13/Jan/20
I =∫_(−∞) ^(+∞)  ((arctan(2x+1))/((x^2 +3)^2 ))dx ⇒  I=_(x=(√3)t)    ∫_(−∞) ^(+∞)  ((arctan(2(√3)t+1))/(9(t^2 +1)^2 ))(√3)dt  =((√3)/9) ∫_(−∞) ^(+∞)  ((arctan(2(√3)t+1))/((t^2 +1)^2 ))dt  let ϕ(z)=((arctan(2(√3)z+1))/((z^2  +1)^2 )) ⇒  ϕ(z)=((arctan(2(√3)z +1))/((z−i)^2 (z+i)^2 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i) (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)   {((arctan(2(√3)z +1))/((z+i)^2 ))}^((1))   =lim_(z→i)   ((((2(√3))/(1+(2(√3)z+1)^2 ))(z+i)^2 −2(z+i)arctan(2(√3)z +1))/((z+i)^4 ))  =lim_(z→i)   ((((2(√3)(z+i))/(1+(2(√3)z +1)^2 ))−2arctan(2(√3)z+1))/((z+i)^3 ))  =((((4i(√3))/(1+(2(√3)i +1)^2 ))−2arctan(2(√3)i+1))/(−8i))  =−((√3)/2)×(1/(1−12+4(√3)i +1))+(1/(4i))arctan(2(√3)i+1)  =((−(√3))/(2(−10+4(√3)i))) +(1/(4i))arctan(2(√3)i+1)  =((√3)/(4(5−2(√3)i)))−(i/4) arctan(2(√3)i+1)
I=+arctan(2x+1)(x2+3)2dxI=x=3t+arctan(23t+1)9(t2+1)23dt=39+arctan(23t+1)(t2+1)2dtletφ(z)=arctan(23z+1)(z2+1)2φ(z)=arctan(23z+1)(zi)2(z+i)2+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{arctan(23z+1)(z+i)2}(1)=limzi231+(23z+1)2(z+i)22(z+i)arctan(23z+1)(z+i)4=limzi23(z+i)1+(23z+1)22arctan(23z+1)(z+i)3=4i31+(23i+1)22arctan(23i+1)8i=32×1112+43i+1+14iarctan(23i+1)=32(10+43i)+14iarctan(23i+1)=34(523i)i4arctan(23i+1)
Commented by msup trace by abdo last updated on 13/Jan/20
we have arctan(z)=(1/(2i))ln(((1+iz)/(1−iz))) ⇒  arctan(2(√3)i +1)=(1/(2i))ln(((1+i(2(√3)i+1))/(1−i(2(√3)i +1))))  =(1/(2i))ln(((1−2(√3)+i)/(1+2(√3)−i))) also  1−2(√3)+i =(√((1−2(√3))^2 +1))e^(iarctan((1/(1−2(√3)))))   1+2(√3)−i =(√((1+2(√3))^2  +1))e^(−iarctan((1/(1+2(√3)))))   ⇒ln(((...)/(...)))=(1/2)ln((1−2(√3))^2 +1)+iarctan((1/(1−2(√3))))  −(1/2)ln((1+2(√3))^2 +1) +i arctan((1/(1+2(√3))))
wehavearctan(z)=12iln(1+iz1iz)arctan(23i+1)=12iln(1+i(23i+1)1i(23i+1))=12iln(123+i1+23i)also123+i=(123)2+1eiarctan(1123)1+23i=(1+23)2+1eiarctan(11+23)ln()=12ln((123)2+1)+iarctan(1123)12ln((1+23)2+1)+iarctan(11+23)
Commented by mathmax by abdo last updated on 13/Jan/20
⇒arctan(2(√3)i+1)=(1/(4i))ln(((1−4(√3)+12+1)/(1+4(√3)+12+1)))  +(1/2){ arctan((1/(1−2(√3))))+arctan((1/(1+2(√3))))}  =(1/(4i))ln(((7−2(√3))/(7+2(√3))))+(1/2){(π/2)−arctan(2(√3)+1)−((π/2)−arctan(2(√3)−1)}  =(1/(4i))ln(((7−2(√3))/(7+2(√3))))+(1/2)(arctan(2(√3)−1)−arctan(2(√3)+1))
arctan(23i+1)=14iln(143+12+11+43+12+1)+12{arctan(1123)+arctan(11+23)}=14iln(7237+23)+12{π2arctan(23+1)(π2arctan(231)}=14iln(7237+23)+12(arctan(231)arctan(23+1))

Leave a Reply

Your email address will not be published. Required fields are marked *