calculate-arctan-2x-1-x-2-3-2-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 77995 by mathmax by abdo last updated on 12/Jan/20 calculate∫−∞+∞arctan(2x+1)(x2+3)2dx Commented by msup trace by abdo last updated on 13/Jan/20 I=∫−∞+∞arctan(2x+1)(x2+3)2dx⇒I=x=3t∫−∞+∞arctan(23t+1)9(t2+1)23dt=39∫−∞+∞arctan(23t+1)(t2+1)2dtletφ(z)=arctan(23z+1)(z2+1)2⇒φ(z)=arctan(23z+1)(z−i)2(z+i)2∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{arctan(23z+1)(z+i)2}(1)=limz→i231+(23z+1)2(z+i)2−2(z+i)arctan(23z+1)(z+i)4=limz→i23(z+i)1+(23z+1)2−2arctan(23z+1)(z+i)3=4i31+(23i+1)2−2arctan(23i+1)−8i=−32×11−12+43i+1+14iarctan(23i+1)=−32(−10+43i)+14iarctan(23i+1)=34(5−23i)−i4arctan(23i+1) Commented by msup trace by abdo last updated on 13/Jan/20 wehavearctan(z)=12iln(1+iz1−iz)⇒arctan(23i+1)=12iln(1+i(23i+1)1−i(23i+1))=12iln(1−23+i1+23−i)also1−23+i=(1−23)2+1eiarctan(11−23)1+23−i=(1+23)2+1e−iarctan(11+23)⇒ln(……)=12ln((1−23)2+1)+iarctan(11−23)−12ln((1+23)2+1)+iarctan(11+23) Commented by mathmax by abdo last updated on 13/Jan/20 ⇒arctan(23i+1)=14iln(1−43+12+11+43+12+1)+12{arctan(11−23)+arctan(11+23)}=14iln(7−237+23)+12{π2−arctan(23+1)−(π2−arctan(23−1)}=14iln(7−237+23)+12(arctan(23−1)−arctan(23+1)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-P-1-P-2-P-3-will-be-taken-as-point-in-an-Argand-diagram-representing-complex-number-Z-1-Z-2-Z-3-and-point-P-1-P-2-P-3-is-an-equalateral-triangle-show-that-Z-2-Z-3-2-Z-3-Z-1-Next Next post: Question-143535 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.