Menu Close

calculate-by-residus-method-the-integral-0-dx-1-x-2-n-with-n-integr-and-n-1-




Question Number 70594 by mathmax by abdo last updated on 06/Oct/19
calculate by residus method the integral  ∫_0 ^∞   (dx/((1+x^2 )^n ))  with n integr and n≥1
calculatebyresidusmethodtheintegral0dx(1+x2)nwithnintegrandn1
Commented by mathmax by abdo last updated on 23/Oct/19
let A_n =∫_0 ^∞   (dx/((x^2 +1)^n )) ⇒2A_n =∫_(−∞) ^(+∞)  (dx/((x^2 +1)^n )) let W(z)=(1/((z^2 +1)^n ))  ⇒W(z)=(1/((z−i)^n (z+i)^n )) so the poles of W are i and −i  at ordr nresidus theorem give ∫_(−∞) ^(+∞) W(z)dz =2iπ Res(W,i)  Res(W,i)=lim_(z→i)   (1/((n−1)!)){(z−i)^n W(z)}^((n−1))   =lim_(z→i)   (1/((n−1)!)){(z+i)^(−n) }^((n−1))   let first find{ (z+i)^(−n) }^((p))   we have {(z+i)^(−n) }^((1)) =−n(z+i)^(−n−1) =−n(z+i)^(−(n+1))   {(z+i)}^((2)) =(−1)^2 n(n+1)(z+i)^(−(n+2))   ...⇒{(z+i)^(−n) }^((p)) =(−1)^p n(n+1)...(n+p−1)(z+i)^(−(n+p))   p=n−1 ⇒{(z+i)^(−n) }^((n−1)) =(−1)^(n−1) n(n+1)...(2n−2)(z+i)^(−(2n−1))   Res(W,i) =lim_(z→i)    (1/((n−1)!))(−1)^(n−1) n(n+1)....(2n−2)(z+i)^(−2n+1)   =(((−1)^(n−1) n(n+1)(n+2)...(2n−2))/((n−1)!))×(1/((2i)^(2n−1) ))  =(((−1)^(n−1) n(n+1)....(2n−2))/(2^(2n−1)  (−1)^n ))×i =−i((n(n+1)(n+2)...(2n−2))/2^(2n−1) ) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ×−i((n(n+1)(n+2)....(2n−2))/2^(2n−1) )  =(π/4^(n−1) )×n(n+1)....(2n−2) =2A_n  ⇒  A_n =((πn(n+1)(n+2)...(2n−2))/(2×4^(n−1) ))  with n>1 and  A_1 =(π/2)
letAn=0dx(x2+1)n2An=+dx(x2+1)nletW(z)=1(z2+1)nW(z)=1(zi)n(z+i)nsothepolesofWareiandiatordrnresidustheoremgive+W(z)dz=2iπRes(W,i)Res(W,i)=limzi1(n1)!{(zi)nW(z)}(n1)=limzi1(n1)!{(z+i)n}(n1)letfirstfind{(z+i)n}(p)wehave{(z+i)n}(1)=n(z+i)n1=n(z+i)(n+1){(z+i)}(2)=(1)2n(n+1)(z+i)(n+2){(z+i)n}(p)=(1)pn(n+1)(n+p1)(z+i)(n+p)p=n1{(z+i)n}(n1)=(1)n1n(n+1)(2n2)(z+i)(2n1)Res(W,i)=limzi1(n1)!(1)n1n(n+1).(2n2)(z+i)2n+1=(1)n1n(n+1)(n+2)(2n2)(n1)!×1(2i)2n1=(1)n1n(n+1).(2n2)22n1(1)n×i=in(n+1)(n+2)(2n2)22n1+W(z)dz=2iπ×in(n+1)(n+2).(2n2)22n1=π4n1×n(n+1).(2n2)=2AnAn=πn(n+1)(n+2)(2n2)2×4n1withn>1andA1=π2
Answered by mind is power last updated on 06/Oct/19
f(z)=(1/((1+z^2 )^n ))  lim zf(z)=0  ∫_0 ^∞ f(z)dz=(1/2)∫_(−∞) ^(+∞) (dz/((1+z^2 )^n ))=2iπRes(f,i)  Res(f,i)=(1/((n−1)!))(d^(n−1) /dz^(n−1) )(z−i)^n .(1/((z−i)^n (z+i)^n ))∣_(z=i)   =(1/((n−1)!)).(d^(n−1) /dz^(n−1) ).(1/((z+i)^n ))  ((1/((z−i)^n )))^((k)) =(((−1)^k n...(n+k−1))/((z+i)^(n+k) ))  ⇒(d^(n−1) /dz^(n−1) ).(1/((z+i)^n ))=(((−1)^n .n.....(2n−2))/((z+i)^(2n−1) ))  Res(f,i)=(1/((n−1)!)).(((−1)^(n−1) ×n....(2n−2))/((2i)^(2n−1) ))=((2i.(−1)^(n−1) .n...(2n−2))/((n−1)!.(−4)^n .))  ∫_(−∞) ^(+∞) f(z)dz=((4π.n..(2n−2))/((n−1)!.4^n ))=((4π.(2n−2)!)/((n−1)!4^n ))  ⇒∫_0 ^(+∞) (dx/((1+x^2 )^n ))=((2.4^(−n) π(2n−2)!)/((n−1)!))
f(z)=1(1+z2)nlimzf(z)=00f(z)dz=12+dz(1+z2)n=2iπRes(f,i)Res(f,i)=1(n1)!dn1dzn1(zi)n.1(zi)n(z+i)nz=i=1(n1)!.dn1dzn1.1(z+i)n(1(zi)n)(k)=(1)kn(n+k1)(z+i)n+kdn1dzn1.1(z+i)n=(1)n.n..(2n2)(z+i)2n1Res(f,i)=1(n1)!.(1)n1×n.(2n2)(2i)2n1=2i.(1)n1.n(2n2)(n1)!.(4)n.+f(z)dz=4π.n..(2n2)(n1)!.4n=4π.(2n2)!(n1)!4n0+dx(1+x2)n=2.4nπ(2n2)!(n1)!
Commented by mathmax by abdo last updated on 06/Oct/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *