calculate-by-residus-method-the-integral-0-dx-1-x-2-n-with-n-integr-and-n-1- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 70594 by mathmax by abdo last updated on 06/Oct/19 calculatebyresidusmethodtheintegral∫0∞dx(1+x2)nwithnintegrandn⩾1 Commented by mathmax by abdo last updated on 23/Oct/19 letAn=∫0∞dx(x2+1)n⇒2An=∫−∞+∞dx(x2+1)nletW(z)=1(z2+1)n⇒W(z)=1(z−i)n(z+i)nsothepolesofWareiand−iatordrnresidustheoremgive∫−∞+∞W(z)dz=2iπRes(W,i)Res(W,i)=limz→i1(n−1)!{(z−i)nW(z)}(n−1)=limz→i1(n−1)!{(z+i)−n}(n−1)letfirstfind{(z+i)−n}(p)wehave{(z+i)−n}(1)=−n(z+i)−n−1=−n(z+i)−(n+1){(z+i)}(2)=(−1)2n(n+1)(z+i)−(n+2)…⇒{(z+i)−n}(p)=(−1)pn(n+1)…(n+p−1)(z+i)−(n+p)p=n−1⇒{(z+i)−n}(n−1)=(−1)n−1n(n+1)…(2n−2)(z+i)−(2n−1)Res(W,i)=limz→i1(n−1)!(−1)n−1n(n+1)….(2n−2)(z+i)−2n+1=(−1)n−1n(n+1)(n+2)…(2n−2)(n−1)!×1(2i)2n−1=(−1)n−1n(n+1)….(2n−2)22n−1(−1)n×i=−in(n+1)(n+2)…(2n−2)22n−1⇒∫−∞+∞W(z)dz=2iπ×−in(n+1)(n+2)….(2n−2)22n−1=π4n−1×n(n+1)….(2n−2)=2An⇒An=πn(n+1)(n+2)…(2n−2)2×4n−1withn>1andA1=π2 Answered by mind is power last updated on 06/Oct/19 f(z)=1(1+z2)nlimzf(z)=0∫0∞f(z)dz=12∫−∞+∞dz(1+z2)n=2iπRes(f,i)Res(f,i)=1(n−1)!dn−1dzn−1(z−i)n.1(z−i)n(z+i)n∣z=i=1(n−1)!.dn−1dzn−1.1(z+i)n(1(z−i)n)(k)=(−1)kn…(n+k−1)(z+i)n+k⇒dn−1dzn−1.1(z+i)n=(−1)n.n…..(2n−2)(z+i)2n−1Res(f,i)=1(n−1)!.(−1)n−1×n….(2n−2)(2i)2n−1=2i.(−1)n−1.n…(2n−2)(n−1)!.(−4)n.∫−∞+∞f(z)dz=4π.n..(2n−2)(n−1)!.4n=4π.(2n−2)!(n−1)!4n⇒∫0+∞dx(1+x2)n=2.4−nπ(2n−2)!(n−1)! Commented by mathmax by abdo last updated on 06/Oct/19 thankyousir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-1-n-n-2-n-1-3-Next Next post: caoculate-lim-x-0-cos-sin-x-2-1-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.