Menu Close

calculate-cos-6-pi-8-cos-6-3pi-8-cos-6-5pi-8-cos-6-7pi-8-




Question Number 76633 by mathmax by abdo last updated on 28/Dec/19
calculate cos^6 ((π/8))+cos^6 (((3π)/8))+cos^6 (((5π)/8))+cos^6 (((7π)/8))
calculatecos6(π8)+cos6(3π8)+cos6(5π8)+cos6(7π8)
Answered by MJS last updated on 28/Dec/19
cos (π/8) =((√(2+(√2)))/2)  cos ((3π)/8) =((√(2−(√2)))/2)  cos ((5π)/8) =−((√(2−(√2)))/2)  cos ((7π)/8) =−((√(2+(√2)))/2)  ⇒ answer is 2×((((√(2+(√2)))/2))^6 +(((√(2+(√2)))/2))^6 )=(5/4)
cosπ8=2+22cos3π8=222cos5π8=222cos7π8=2+22answeris2×((2+22)6+(2+22)6)=54
Commented by mathmax by abdo last updated on 29/Dec/19
thank you sir.
thankyousir.
Answered by $@ty@m123 last updated on 29/Dec/19
= cos^6 ((π/8))+cos^6 (((3π)/8))+cos^6 (((3π)/8))+cos^6 ((π/8))  = 2{cos^6 ((π/8))+cos^6 (((3π)/8))}  = 2{cos^6 ((π/8))+sin^6 ((π/8))}  = 2{cos^2 ((π/8))+sin^2 ((π/8))}{cos^4 ((π/8))+sin^4 ((π/8))−cos^2 ((π/8)).sin^2 ((π/8))}  = 2{cos^4 ((π/8))+sin^4 ((π/8))−(1/4)×4cos^2 ((π/8)).sin^2 ((π/8))}  = 2[{cos^2 ((π/8))+sin^2 ((π/8))}^2 −2cos^2 ((π/8)).sin^2 ((π/8))−(1/4)×(sin (π/4))^2 ]  = 2[1−(1/2)×sin^2  (π/4)−(1/4)×(1/2)]  = 2[1−(1/2)×(1/2)−(1/8)]  =2(1−(1/4)−(1/8))  =2×((8−2−1)/8)  =(5/4)
=cos6(π8)+cos6(3π8)+cos6(3π8)+cos6(π8)=2{cos6(π8)+cos6(3π8)}=2{cos6(π8)+sin6(π8)}=2{cos2(π8)+sin2(π8)}{cos4(π8)+sin4(π8)cos2(π8).sin2(π8)}=2{cos4(π8)+sin4(π8)14×4cos2(π8).sin2(π8)}=2[{cos2(π8)+sin2(π8)}22cos2(π8).sin2(π8)14×(sinπ4)2]=2[112×sin2π414×12]=2[112×1218]=2(11418)=2×8218=54
Commented by abdomathmax last updated on 29/Dec/19
thankx  sir.
thankxsir.

Leave a Reply

Your email address will not be published. Required fields are marked *