Question Number 76633 by mathmax by abdo last updated on 28/Dec/19
$${calculate}\:{cos}^{\mathrm{6}} \left(\frac{\pi}{\mathrm{8}}\right)+{cos}^{\mathrm{6}} \left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)+{cos}^{\mathrm{6}} \left(\frac{\mathrm{5}\pi}{\mathrm{8}}\right)+{cos}^{\mathrm{6}} \left(\frac{\mathrm{7}\pi}{\mathrm{8}}\right) \\ $$
Answered by MJS last updated on 28/Dec/19
$$\mathrm{cos}\:\frac{\pi}{\mathrm{8}}\:=\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{8}}\:=\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{8}}\:=−\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\frac{\mathrm{7}\pi}{\mathrm{8}}\:=−\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\mathrm{2}×\left(\left(\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}{\mathrm{2}}\right)^{\mathrm{6}} +\left(\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}{\mathrm{2}}\right)^{\mathrm{6}} \right)=\frac{\mathrm{5}}{\mathrm{4}} \\ $$
Commented by mathmax by abdo last updated on 29/Dec/19
$${thank}\:{you}\:{sir}. \\ $$
Answered by $@ty@m123 last updated on 29/Dec/19
$$=\:{cos}^{\mathrm{6}} \left(\frac{\pi}{\mathrm{8}}\right)+{cos}^{\mathrm{6}} \left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)+{cos}^{\mathrm{6}} \left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)+{cos}^{\mathrm{6}} \left(\frac{\pi}{\mathrm{8}}\right) \\ $$$$=\:\mathrm{2}\left\{{cos}^{\mathrm{6}} \left(\frac{\pi}{\mathrm{8}}\right)+{cos}^{\mathrm{6}} \left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\right\} \\ $$$$=\:\mathrm{2}\left\{{cos}^{\mathrm{6}} \left(\frac{\pi}{\mathrm{8}}\right)+{sin}^{\mathrm{6}} \left(\frac{\pi}{\mathrm{8}}\right)\right\} \\ $$$$=\:\mathrm{2}\left\{{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)+{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)\right\}\left\{{cos}^{\mathrm{4}} \left(\frac{\pi}{\mathrm{8}}\right)+{sin}^{\mathrm{4}} \left(\frac{\pi}{\mathrm{8}}\right)−{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right).{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)\right\} \\ $$$$=\:\mathrm{2}\left\{{cos}^{\mathrm{4}} \left(\frac{\pi}{\mathrm{8}}\right)+{sin}^{\mathrm{4}} \left(\frac{\pi}{\mathrm{8}}\right)−\frac{\mathrm{1}}{\mathrm{4}}×\mathrm{4}{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right).{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)\right\} \\ $$$$=\:\mathrm{2}\left[\left\{{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)+{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)\right\}^{\mathrm{2}} −\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right).{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)−\frac{\mathrm{1}}{\mathrm{4}}×\left(\mathrm{sin}\:\frac{\pi}{\mathrm{4}}\right)^{\mathrm{2}} \right] \\ $$$$=\:\mathrm{2}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{sin}^{\mathrm{2}} \:\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$$=\:\mathrm{2}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{8}}\right] \\ $$$$=\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{8}}\right) \\ $$$$=\mathrm{2}×\frac{\mathrm{8}−\mathrm{2}−\mathrm{1}}{\mathrm{8}} \\ $$$$=\frac{\mathrm{5}}{\mathrm{4}} \\ $$
Commented by abdomathmax last updated on 29/Dec/19
$${thankx}\:\:{sir}. \\ $$