Question Number 11900 by @ANTARES_VY last updated on 04/Apr/17
$$\boldsymbol{\mathrm{Calculate}}. \\ $$$$\boldsymbol{\mathrm{cos}}\frac{\boldsymbol{\pi}}{\mathrm{7}}Γ\boldsymbol{\mathrm{cos}}\frac{\mathrm{4}\boldsymbol{\pi}}{\mathrm{7}}Γ\boldsymbol{\mathrm{cos}}\frac{\mathrm{5}\boldsymbol{\pi}}{\mathrm{7}}. \\ $$
Answered by ajfour last updated on 04/Apr/17
$$=\:\mathrm{cos}\:\frac{\pi}{\mathrm{7}}\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{7}}\left[β\mathrm{cos}\:\left(\piβ\frac{\mathrm{5}\pi}{\mathrm{7}}\right)\:\right] \\ $$$$=\:β\mathrm{cos}\:\frac{\pi}{\mathrm{7}}\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{7}}\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{7}} \\ $$$$=\:\frac{β\mathrm{1}}{\mathrm{2sin}\:\frac{\pi}{\mathrm{7}}}\left[\:\mathrm{2sin}\:\frac{\pi}{\mathrm{7}}\mathrm{cos}\:\frac{\pi}{\mathrm{7}}\right]\left[\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{7}}\:\right] \\ $$$$=β\frac{\mathrm{1}}{\mathrm{2sin}\:\frac{\pi}{\mathrm{7}}}\left[\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\right]\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{7}} \\ $$$$=\:β\frac{\mathrm{1}}{\mathrm{4sin}\:\frac{\pi}{\mathrm{7}}}\left(\mathrm{sin}\:\frac{\mathrm{4}\pi}{\mathrm{7}}\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{7}}\right) \\ $$$$=\:β\left(\frac{\mathrm{sin}\:\frac{\mathrm{8}\pi}{\mathrm{7}}}{\mathrm{8sin}\:\frac{\pi}{\mathrm{7}}}\right)=\:β\frac{\mathrm{sin}\:\left(\pi+\frac{\pi}{\mathrm{7}}\right)}{\mathrm{8sin}\:\frac{\pi}{\mathrm{7}}} \\ $$$$=\:β\frac{β\mathrm{sin}\:\left(\pi/\mathrm{7}\right)}{\mathrm{8sin}\:\left(\pi/\mathrm{7}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{8}}\:. \\ $$