Menu Close

calculate-D-xy-x-2-2y-2-dxdy-D-x-y-0-x-1-and-0-y-1-x-2-




Question Number 78284 by msup trace by abdo last updated on 15/Jan/20
calculate ∫∫_D xy(√(x^2 +2y^2 ))dxdy  D={(x,y)/0≤x≤1 and 0≤y≤(√(1−x^2 ))}
calculateDxyx2+2y2dxdyD={(x,y)/0x1and0y1x2}
Commented by abdomathmax last updated on 17/Jan/20
I =∫∫_D xy(√(x^2 +2y^2 ))dxdy ⇒  I =∫_0 ^1 (∫_0 ^(√(1−x^2 )) y(√(x^2 +2y^2 ))dy)xdx  but  ∫_0 ^(√(1−x^2 )) y(√(x^2 +2y^2 ))dy =[(1/6)(x^2  +2y^2 )^(3/2) ]_0 ^(√(1−x^2 ))   =(1/6){ (x^2 +(x^2 +2−2x^2 )^(3/2) −x^3 }  =(1/6){ (x^2 −x^3 +(2−x^2 )^(3/2) } ⇒  6I =∫_0 ^1 x(x^2 −x^3 +(2−x^2 )^(3/2) )dx  =∫_0 ^1 (x^3 −x^4 )dx+∫_0 ^1 x(2−x^2 )^(3/2) dx  =[(x^4 /4)−(x^5 /5)]_0 ^1 +∫_0 ^1 x(2−x^2 )^(3/2) dx  =(1/(20)) +∫_0 ^1 x(2−x^2 )^(3/2)  dx  we have  ∫_0 ^1 x(2−x^2 )^(3/2) dx =_(x=(√2)sint)    ∫_0 ^(π/4) (√2)sint(2−2sin^2 t)^(3/2) (√2)costdt  =2×2^(3/2)  ∫_0 ^(π/4) sint cos^4 t dt  =2^(5/2)   [−(1/5)cos^5 t]_0 ^(π/4)  =−((4(√2))/5)( ((1/( (√2))))^5 −1)  =−((4(√2))/5)(  (1/(4(√2)))−1) =−(1/5)+((4(√2))/5) ⇒  6I =(1/(20))−(1/5) +((4(√2))/5) =((−3)/(20)) +((4(√2))/5) ⇒  I =−(1/(40)) +((2(√2))/(15))
I=Dxyx2+2y2dxdyI=01(01x2yx2+2y2dy)xdxbut01x2yx2+2y2dy=[16(x2+2y2)32]01x2=16{(x2+(x2+22x2)32x3}=16{(x2x3+(2x2)32}6I=01x(x2x3+(2x2)32)dx=01(x3x4)dx+01x(2x2)32dx=[x44x55]01+01x(2x2)32dx=120+01x(2x2)32dxwehave01x(2x2)32dx=x=2sint0π42sint(22sin2t)322costdt=2×2320π4sintcos4tdt=252[15cos5t]0π4=425((12)51)=425(1421)=15+4256I=12015+425=320+425I=140+2215

Leave a Reply

Your email address will not be published. Required fields are marked *