Menu Close

calculate-dt-cos-2t-a-cos-2t-a-




Question Number 77002 by jagoll last updated on 02/Jan/20
  calculate ∫ (dt/(cos (2t+a)cos (2t−a)))
calculatedtcos(2t+a)cos(2ta)
Commented by turbo msup by abdo last updated on 03/Jan/20
we have   cos(2t+a)cos(2t−a)  =(1/2)(cos(4t)+cos(2a)) ⇒  I =2∫ (dt/(cos(4t)+cos(2a)))  =_(4t=u)    2 ∫  (1/(cos(u)+cos(2a)))(du/4)  =(1/2)∫  (du/(cos(u)+cos(2a)))  =_(tan((u/2))=x)   (1/2) ∫  (1/(((1−x^2 )/(1+x^2 )) +cos(2a)))((2dx)/(1+x^2 ))  =∫  (dx/(1−x^2  +cos(2a)+cos(2a)x^2 ))  =∫  (dx/((cos(2a)−1)x^2  +1+cos(2a)))  =∫  (dx/(1+cos(2a)−(1−cos(2a)x^2 ))  =(1/(1+cos(2a))) ∫   (dx/(1−((1−cos(2a))/(1+cos(2a)))x^2 ))  =(1/(1+cos(2a))) ∫  (dx/(1−(tana x)^2 ))  =_(x tana =z)   (1/(1+cos(2a))) ∫  (dz/(tana(1−z^2 )))  =(1/(1+cos(2a))tana)) ∫  ((1/(1−z))+(1/(1+z)))dz  =(1/(tana(1+cos(2a))))(1/2)ln∣((1+z)/(1−z))∣ +c  =(1/(2tana(1+cos(2a))))ln∣((1+xtana)/(1−xtana))∣ +c  =(1/(2tana(1+cos(2a)))ln∣((1+tanatan((u/2)))/(1−xtana tan((u/2))))∣ +C  with u=4t
wehavecos(2t+a)cos(2ta)=12(cos(4t)+cos(2a))I=2dtcos(4t)+cos(2a)=4t=u21cos(u)+cos(2a)du4=12ducos(u)+cos(2a)=tan(u2)=x1211x21+x2+cos(2a)2dx1+x2=dx1x2+cos(2a)+cos(2a)x2=dx(cos(2a)1)x2+1+cos(2a)=dx1+cos(2a)(1cos(2a)x2=11+cos(2a)dx11cos(2a)1+cos(2a)x2=11+cos(2a)dx1(tanax)2=xtana=z11+cos(2a)dztana(1z2)=11+cos(2a))tana(11z+11+z)dz=1tana(1+cos(2a))12ln1+z1z+c=12tana(1+cos(2a))ln1+xtana1xtana+c=12tana(1+cos(2a)ln1+tanatan(u2)1xtanatan(u2)+Cwithu=4t
Commented by mathmax by abdo last updated on 03/Jan/20
⇒I =(1/(2tan(a)×(2cos^2 a)))ln∣((1+tana.tan(2t))/(1−tana.tan(2t)))∣ +C  =(1/(4 ((sina)/(cosa))×cos^2 a))ln∣((1+tan(a)tan(2t))/(1−tana.tan(2t)))∣ +C  =(1/(2sin(2a)))ln∣((1+tana.tan(2t))/(1−tana.tan(2t)))∣ +C.
I=12tan(a)×(2cos2a)ln1+tana.tan(2t)1tana.tan(2t)+C=14sinacosa×cos2aln1+tan(a)tan(2t)1tana.tan(2t)+C=12sin(2a)ln1+tana.tan(2t)1tana.tan(2t)+C.
Answered by john santu last updated on 02/Jan/20
by manipulate algebra   =∫ ((sin[(2t+a)−(2t−a)])/(sin 2a×cos (2t+a)cos (2t−a)))dt  = (1/(sin 2a))∫ ((sin (2t+a)cos (2t−a)−cos (2t+a)sin (2t−a))/(cos (2t+a)cos (2t−a))) dt  =(1/(sin 2a)){∫tan (2t+a)dt−∫tan (2t−a)dt}  = (1/(sin 2a)){−(1/2)ln∣sec (2t+a)∣+(1/2)ln∣sec (2t−a)∣}+c .■★
bymanipulatealgebra=sin[(2t+a)(2ta)]sin2a×cos(2t+a)cos(2ta)dt=1sin2asin(2t+a)cos(2ta)cos(2t+a)sin(2ta)cos(2t+a)cos(2ta)dt=1sin2a{tan(2t+a)dttan(2ta)dt}=1sin2a{12lnsec(2t+a)+12lnsec(2ta)}+c.◼
Commented by peter frank last updated on 02/Jan/20
good
good
Commented by jagoll last updated on 02/Jan/20
thanks you sir
thanksyousir
Commented by peter frank last updated on 02/Jan/20
please help Qn 76964
pleasehelpQn76964
Commented by john santu last updated on 02/Jan/20
i try sir
itrysir
Answered by MJS last updated on 02/Jan/20
∫(dt/(cos (2t+a) cos (2t−a)))=  =2∫(dt/(cos 4t +cos 2a))=       [u=tan 2t → dt=(du/(2(t^2 +1)))]  =−(1/2)∫(du/(u^2 sin^2  a −cos^2  a ))=  =(1/(4cos a))(∫(du/(usin a +cos a))−∫(du/(usin a −cos a)))=  =(1/(4cos a sin a))(ln (usin a +cos a) −ln (usin a −cos a))=  =(1/(2sin 2a))ln ((usin a +cos a)/(usin a −cos a)) =  =(1/(2sin 2a))ln ∣((cos (2t−a))/(cos (2t+a)))∣ +C
dtcos(2t+a)cos(2ta)==2dtcos4t+cos2a=[u=tan2tdt=du2(t2+1)]=12duu2sin2acos2a==14cosa(duusina+cosaduusinacosa)==14cosasina(ln(usina+cosa)ln(usinacosa))==12sin2alnusina+cosausinacosa==12sin2alncos(2ta)cos(2t+a)+C

Leave a Reply

Your email address will not be published. Required fields are marked *