Question Number 77002 by jagoll last updated on 02/Jan/20

Commented by turbo msup by abdo last updated on 03/Jan/20

Commented by mathmax by abdo last updated on 03/Jan/20

Answered by john santu last updated on 02/Jan/20
![by manipulate algebra =∫ ((sin[(2t+a)−(2t−a)])/(sin 2a×cos (2t+a)cos (2t−a)))dt = (1/(sin 2a))∫ ((sin (2t+a)cos (2t−a)−cos (2t+a)sin (2t−a))/(cos (2t+a)cos (2t−a))) dt =(1/(sin 2a)){∫tan (2t+a)dt−∫tan (2t−a)dt} = (1/(sin 2a)){−(1/2)ln∣sec (2t+a)∣+(1/2)ln∣sec (2t−a)∣}+c .■★](https://www.tinkutara.com/question/Q77003.png)
Commented by peter frank last updated on 02/Jan/20

Commented by jagoll last updated on 02/Jan/20

Commented by peter frank last updated on 02/Jan/20

Commented by john santu last updated on 02/Jan/20

Answered by MJS last updated on 02/Jan/20
![∫(dt/(cos (2t+a) cos (2t−a)))= =2∫(dt/(cos 4t +cos 2a))= [u=tan 2t → dt=(du/(2(t^2 +1)))] =−(1/2)∫(du/(u^2 sin^2 a −cos^2 a ))= =(1/(4cos a))(∫(du/(usin a +cos a))−∫(du/(usin a −cos a)))= =(1/(4cos a sin a))(ln (usin a +cos a) −ln (usin a −cos a))= =(1/(2sin 2a))ln ((usin a +cos a)/(usin a −cos a)) = =(1/(2sin 2a))ln ∣((cos (2t−a))/(cos (2t+a)))∣ +C](https://www.tinkutara.com/question/Q77011.png)