Menu Close

calculate-dx-2-x-2-3-x-2-




Question Number 138128 by mathmax by abdo last updated on 10/Apr/21
calculate ∫   (dx/( (√(2−x^2 ))+(√(3+x^2 ))))
calculatedx2x2+3+x2
Answered by MJS_new last updated on 10/Apr/21
∫(dx/( (√(2−x^2 ))+(√(3+x^2 ))))=∫((√(x^2 +3))/(2x^2 +1))dx−∫((√(2−x^2 ))/(2x^2 +1))dx  ∫((√(x^2 +3))/(2x^2 +1))dx=       [u=((x+(√(x^2 +3)))/( (√3))) → dx=((√(3(x^2 +3)))/(x+(√(x^2 +3))))du]  =(3/2)∫(((u^2 +1)^2 )/(u(3u^4 −4u^2 +3)))du=  =(1/2)∫(du/u)+((√(30))/(12))∫(du/(u^2 −((√(30))/3)u+3))−((√(30))/(12))∫(du/(u^2 +((√(30))/3)u+3))=  =(1/2)ln u +((√5)/2)arctan ((√6)u−(√5)) −((√5)/2)arctan ((√6)u+(√5)) =  =(1/2)ln (x+(√(x^2 +3))) +((√5)/2)(arctan ((√2)x−(√5)+(√(2(x^2 +3)))) −arctan ((√2)x+(√5)+(√(2(x^2 +3)))))     [1]  ∫((√(2−x^2 ))/(2x^2 +1))dx=       [v=(x/( (√(2−x^2 )))) → dx=(((2−x^2 )^(3/2) )/2)dv]  =2∫(dv/((v^2 +1)(5v^2 +1)))=(1/2)∫(dv/(v^2 +(1/5)))−(1/2)∫(dv/(v^2 +1))=  =((√5)/2)arctan (√5)v −(1/2)arctan v =  =((√5)/2)arctan (((√5)x)/( (√(2−x^2 )))) −(1/2)arctan (x/( (√(2−x^2 ))))     [2]  answer is [1]+[2]+C
dx2x2+3+x2=x2+32x2+1dx2x22x2+1dxx2+32x2+1dx=[u=x+x2+33dx=3(x2+3)x+x2+3du]=32(u2+1)2u(3u44u2+3)du==12duu+3012duu2303u+33012duu2+303u+3==12lnu+52arctan(6u5)52arctan(6u+5)==12ln(x+x2+3)+52(arctan(2x5+2(x2+3))arctan(2x+5+2(x2+3)))[1]2x22x2+1dx=[v=x2x2dx=(2x2)3/22dv]=2dv(v2+1)(5v2+1)=12dvv2+1512dvv2+1==52arctan5v12arctanv==52arctan5x2x212arctanx2x2[2]answeris[1]+[2]+C
Commented by mathmax by abdo last updated on 10/Apr/21
thank you sir mjs
thankyousirmjs

Leave a Reply

Your email address will not be published. Required fields are marked *