Question Number 76359 by mathmax by abdo last updated on 26/Dec/19
$${calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{7}\right)^{\mathrm{2}} } \\ $$
Commented by mathmax by abdo last updated on 28/Dec/19
$$\left.{let}\:{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{7}\right)^{\mathrm{2}} }\:\:{and}\:\varphi\left({z}\right)=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} −\mathrm{3}{z}+\mathrm{7}\right)^{\mathrm{2}} }\:\right]{poles}\:{of}\:\varphi? \\ $$$${z}^{\mathrm{2}} −\mathrm{3}{z}+\mathrm{7}\:=\mathrm{0}\:\rightarrow\Delta=\mathrm{9}−\mathrm{4}.\mathrm{7}\:=\mathrm{9}−\mathrm{28}\:=−\mathrm{19} \\ $$$${z}_{\mathrm{1}} =\frac{\mathrm{3}+{i}\sqrt{\mathrm{19}}}{\mathrm{2}}\:{and}\:{z}_{\mathrm{2}} =\frac{\mathrm{3}−{i}\sqrt{\mathrm{19}}}{\mathrm{2}} \\ $$$$\varphi\left({z}\right)\:=\frac{\mathrm{1}}{\left({z}−{z}_{\mathrm{1}} \right)^{\mathrm{2}} \left({z}−{z}_{\mathrm{2}} \right)^{\mathrm{2}} }\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{z}_{\mathrm{1}} \right) \\ $$$${Res}\left(\varphi,{z}_{\mathrm{1}} \right)\:={lim}_{{z}\rightarrow{z}_{\mathrm{1}} } \frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left({z}−{z}_{\mathrm{1}} \right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{z}_{\mathrm{1}} \:} \left\{\left({z}−{z}_{\mathrm{2}} \right)^{−\mathrm{2}} \right\}^{\left(\mathrm{1}\right)} \:={lim}_{{z}\rightarrow{z}_{\mathrm{1}} } −\mathrm{2}\left({z}−{z}_{\mathrm{2}} \right)^{−\mathrm{3}} \\ $$$$=−\mathrm{2}\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)^{−\mathrm{3}\:} =−\mathrm{2}\left({i}\sqrt{\mathrm{19}}\right)^{−\mathrm{3}} \:=\frac{−\mathrm{2}}{\left({i}\sqrt{\mathrm{19}}\right)^{\mathrm{3}} }\:=\frac{−\mathrm{2}}{−{i}\left(\mathrm{19}\right)\sqrt{\mathrm{19}}}\:=\frac{\mathrm{2}}{\mathrm{19}{i}\sqrt{\mathrm{19}}} \\ $$$$\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\frac{\mathrm{2}}{\mathrm{19}{i}\sqrt{\mathrm{19}}}\:=\frac{\mathrm{4}\pi}{\mathrm{19}\sqrt{\mathrm{19}}}\:={I} \\ $$$$ \\ $$