Menu Close

calculate-dx-x-2-3x-7-2-




Question Number 76359 by mathmax by abdo last updated on 26/Dec/19
calculate ∫_(−∞) ^∞   (dx/((x^2 −3x+7)^2 ))
calculatedx(x23x+7)2
Commented by mathmax by abdo last updated on 28/Dec/19
let I =∫_(−∞) ^(+∞)  (dx/((x^2 −3x+7)^2 ))  and ϕ(z)=(1/((z^2 −3z+7)^2 )) ]poles of ϕ?  z^2 −3z+7 =0 →Δ=9−4.7 =9−28 =−19  z_1 =((3+i(√(19)))/2) and z_2 =((3−i(√(19)))/2)  ϕ(z) =(1/((z−z_1 )^2 (z−z_2 )^2 )) residus theorem give  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,z_1 )  Res(ϕ,z_1 ) =lim_(z→z_1 ) (1/((2−1)!)){(z−z_1 )^2 ϕ(z)}^((1))   =lim_(z→z_1  ) {(z−z_2 )^(−2) }^((1))  =lim_(z→z_1 ) −2(z−z_2 )^(−3)   =−2(z_1 −z_2 )^(−3 ) =−2(i(√(19)))^(−3)  =((−2)/((i(√(19)))^3 )) =((−2)/(−i(19)(√(19)))) =(2/(19i(√(19))))  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(2/(19i(√(19)))) =((4π)/(19(√(19)))) =I
letI=+dx(x23x+7)2andφ(z)=1(z23z+7)2]polesofφ?z23z+7=0Δ=94.7=928=19z1=3+i192andz2=3i192φ(z)=1(zz1)2(zz2)2residustheoremgive+φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=limzz11(21)!{(zz1)2φ(z)}(1)=limzz1{(zz2)2}(1)=limzz12(zz2)3=2(z1z2)3=2(i19)3=2(i19)3=2i(19)19=219i19+φ(z)dz=2iπ×219i19=4π1919=I

Leave a Reply

Your email address will not be published. Required fields are marked *