calculate-dx-x-2-x-1-3- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66693 by mathmax by abdo last updated on 18/Aug/19 calculate∫−∞+∞dx(x2−x+1)3 Commented by mathmax by abdo last updated on 19/Aug/19 letA=∫−∞+∞dx(x2−x+1)3wehavex2−x+1=(x−12)2+34wedothechangementx−12=32t⇒A=(43)3∫−∞+∞1(t2+1)332dt=326427=32327∫−∞+∞dt(t2+1)3letW(z)=1(z2+1)3⇒W(z)=1(z−i)3(z+i)3sothepolesofWare+−i(triples)residustheoremgive∫−∞+∞W(z)dz=2iπRes(W,i)Res(W,i)=limz→i1(3−1)!{(z−i)3W(z)}(2)=limz→i12{(z+i)−3}(2)=12limz→i{−3(z+i)−4}(1)=−32limz→i{−4(z+i)−5}=6(2i)−5=625i5=316i⇒∫−∞+∞W(z)dz=2iπ316i=3π8⇒A=32327×3π8=4π39 Answered by mind is power last updated on 18/Aug/19 letf(a)=∫−∞+∞dx(x2−x+a)withea>14f(a)=∫−∞+∞dx((x−12)2+4a−14)f(a)=∫−∞+∞dx((2x−1(4a−1))2+1).44a−1f(a)=24a−1∫−∞+∞d2x−14a−1((2x−14a−1))2+1)=f(a)=24a−1[arctg(2x−14a−1)]−∞+∞=2π4a−1f′(a)=dda∫−∞+∞1x2−x+adx=∫−∞+∞−dx(x2−x+a)2f″(a)=∫−∞+∞2dx(a+x+x2)3∫−∞+∞2dx(1+x+x2)3=f″(1)f′(a)=(2π4a−1)′=−4π(4a−1)−32f″(a)=24π(4a−1)−52..>f″(1)=24π(3)−52==>2∫−∞+∞dx(1+x+x2)3=24π93==>∫−∞+∞dx(1+x+x2)3=4π33 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Determine-the-general-solution-of-the-following-linear-diophantine-equation-for-N-Z-m-Z-8N-81m-65-Next Next post: calculate-0-cos-arctanx-4-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.