Menu Close

calculate-dx-x-2-x-1-3-




Question Number 66693 by mathmax by abdo last updated on 18/Aug/19
calculate  ∫_(−∞) ^(+∞)  (dx/((x^2 −x+1)^3 ))
calculate+dx(x2x+1)3
Commented by mathmax by abdo last updated on 19/Aug/19
let A =∫_(−∞) ^(+∞)  (dx/((x^2 −x+1)^3 ))  wehave x^2 −x+1 =(x−(1/2))^2  +(3/4)  we do the changement x−(1/2) =((√3)/2)t ⇒ A =((4/3))^3 ∫_(−∞) ^(+∞)   (1/((t^2  +1)^3 ))((√3)/2)dt  =((√3)/2) ((64)/(27)) =((32(√3))/(27)) ∫_(−∞) ^(+∞)  (dt/((t^2  +1)^3 )) let W(z) =(1/((z^2  +1)^3 )) ⇒  W(z) =(1/((z−i)^3 (z+i)^3 ))  so the poles of W are +^− i (triples)  residus theorem give ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i)  Res(W,i) =lim_(z→i)   (1/((3−1)!)){(z−i)^3 W(z)}^((2))   =lim_(z→i)   (1/2){(z+i)^(−3) }^((2))  =(1/2)lim_(z→i) {−3(z+i)^(−4) }^((1))   =−(3/2)lim_(z→i) {−4(z+i)^(−5) } =6(2i)^(−5)  =(6/(2^5 i^5 )) =(3/(16 i)) ⇒  ∫_(−∞) ^(+∞)   W(z)dz =2iπ (3/(16i)) =((3π)/8) ⇒ A =((32(√3))/(27))×((3π)/8) =((4π(√3))/9)
letA=+dx(x2x+1)3wehavex2x+1=(x12)2+34wedothechangementx12=32tA=(43)3+1(t2+1)332dt=326427=32327+dt(t2+1)3letW(z)=1(z2+1)3W(z)=1(zi)3(z+i)3sothepolesofWare+i(triples)residustheoremgive+W(z)dz=2iπRes(W,i)Res(W,i)=limzi1(31)!{(zi)3W(z)}(2)=limzi12{(z+i)3}(2)=12limzi{3(z+i)4}(1)=32limzi{4(z+i)5}=6(2i)5=625i5=316i+W(z)dz=2iπ316i=3π8A=32327×3π8=4π39
Answered by mind is power last updated on 18/Aug/19
let f(a)=∫_(−∞) ^(+∞) (dx/((x^2 −x+a))) withe a>(1/4)  f(a)=∫_(−∞) ^(+∞) (dx/(((x−(1/2))^2 +((4a−1)/4))))  f(a)=∫_(−∞) ^(+∞) (dx/(((((2x−1)/( (√((4a−1))))))^2 +1))).(4/(4a−1))  f(a)=(2/( (√(4a−1))))∫_(−∞) ^(+∞) (d((2x−1)/( (√(4a−1))))/(((((2x−1)/( (√(4a−1))))))^2 +1)))  =f(a)=(2/( (√(4a−1))))[arctg(((2x−1)/( (√(4a−1)))))]_(−∞) ^(+∞) =((2π)/( (√(4a−1))))  f′(a)=(d/da)∫_(−∞) ^(+∞) (1/(x^2 −x+a))dx=∫_(−∞) ^(+∞) −(dx/((x^2 −x+a)^2 ))  f′′(a)=∫_(−∞) ^(+∞) ((2dx)/((a+x+x^2 )^3 ))  ∫_(−∞) ^(+∞) ((2dx)/((1+x+x^2 )^3 ))=f′′(1)  f′(a)=(((2π)/( (√(4a−1)))))′=−4π(4a−1)^((−3)/2)   f′′(a)=24π(4a−1)^(−(5/2)) ..>f′′(1)=24π(3)^(−(5/2))   ==>2∫_(−∞) ^(+∞) (dx/((1+x+x^2 )^3 ))=((24π)/(9(√3)))==>∫_(−∞) ^(+∞) (dx/((1+x+x^2 )^3 ))=((4π)/(3(√3)))
letf(a)=+dx(x2x+a)withea>14f(a)=+dx((x12)2+4a14)f(a)=+dx((2x1(4a1))2+1).44a1f(a)=24a1+d2x14a1((2x14a1))2+1)=f(a)=24a1[arctg(2x14a1)]+=2π4a1f(a)=dda+1x2x+adx=+dx(x2x+a)2f(a)=+2dx(a+x+x2)3+2dx(1+x+x2)3=f(1)f(a)=(2π4a1)=4π(4a1)32f(a)=24π(4a1)52..>f(1)=24π(3)52==>2+dx(1+x+x2)3=24π93==>+dx(1+x+x2)3=4π33

Leave a Reply

Your email address will not be published. Required fields are marked *