Menu Close

calculate-dx-x-2-x-1-x-2-x-1-




Question Number 67673 by Abdo msup. last updated on 30/Aug/19
calculate ∫_(−∞) ^(+∞)    (dx/((x^2 −x+1)(x^2  +x+1)))
calculate+dx(x2x+1)(x2+x+1)
Commented by Abdo msup. last updated on 30/Aug/19
let A =∫_(−∞) ^(+∞)  (dx/((x^2 −x+1)(x^2 +x+1)))  and ϕ(z) =(1/((z^2 −z+1)(z^2  +z+1)))  poles of ϕ?  z^2 −z +1=0 →Δ =−3 =(i(√3))^2  ⇒  z_1 =((1+i(√3))/2)  and z_2 =((1−i(√3))/2)  z^2 +z +1=0 →Δ =−3 =(i(√3))^2  ⇒  α_1 =((−1+i(√3))/2)  and α_2 =((−1−i(√3))/2)  ϕ(z) = (1/((x−z_1 )(x−z_2 )(x−α_1 )(x−α_2 )))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,z_1 ) +Res(ϕ,α_1 )}  Res (ϕ,z_1 )  =(1/((z_1 −z_2 )(z_1 ^2  +z_1 +1)))  =(1/(i(√3)(z_1 ^2  +z_1 +1)))  Res(ϕ,α_1 ) =(1/((α_1 −α_2 )(α_1 ^2 −α_1 +1))) =(1/(i(√3)(α_1 ^2 −α_1 +1)))  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ{(1/(i(√3)(z_1 ^2  +z_1 +1))) +(1/(i(√3)(α_1 ^2 −α_1 +1)))}  =((2π)/( (√3))){  (1/(z_1 ^2 +z_1 +1)) +(1/(α_1 ^2 −α_1 +1))}
letA=+dx(x2x+1)(x2+x+1)andφ(z)=1(z2z+1)(z2+z+1)polesofφ?z2z+1=0Δ=3=(i3)2z1=1+i32andz2=1i32z2+z+1=0Δ=3=(i3)2α1=1+i32andα2=1i32φ(z)=1(xz1)(xz2)(xα1)(xα2)residustheoremgive+φ(z)dz=2iπ{Res(φ,z1)+Res(φ,α1)}Res(φ,z1)=1(z1z2)(z12+z1+1)=1i3(z12+z1+1)Res(φ,α1)=1(α1α2)(α12α1+1)=1i3(α12α1+1)+φ(z)dz=2iπ{1i3(z12+z1+1)+1i3(α12α1+1)}=2π3{1z12+z1+1+1α12α1+1}

Leave a Reply

Your email address will not be published. Required fields are marked *