Menu Close

calculate-dx-x-2-z-with-z-from-C-




Question Number 67850 by mathmax by abdo last updated on 01/Sep/19
calculate ∫_(−∞) ^(+∞)   (dx/(x^2 −z))  with z from C
calculate+dxx2zwithzfromC
Commented by mathmax by abdo last updated on 01/Sep/19
let I =∫_(−∞) ^(+∞)  (dx/(x^2 −z))  let z =re^(iθ)  ⇒I =∫_(−∞) ^(+∞)  (dx/(x^2 −((√r)e^((iθ)/2) )^2 ))  =∫_(−∞) ^(+∞)   (dx/((x−(√r)e^((iθ)/2) )(x+(√r)e^((iθ)/2) ))) =(1/(2(√r)e^((iθ)/2) ))∫_(−∞) ^(+∞) {(1/(x−(√r)e^((iθ)/2) ))−(1/(x+(√r)e^((iθ)/2) ))}dx  =(1/(2(√r)e^((iθ)/2) )){ ∫_(−∞) ^(+∞)  (dx/(x−(√r)e^((iθ)/2) )) −∫_(−∞) ^(+∞)  (dx/(x−(−(√r)e^((iθ)/2) )))}  we have proved that for a ∈C  ∫_(−∞) ^(+∞)  (dx/(x−a)) =iπ if Im(a)>0 and  −iπ if Im(a)<0 so  if θ>0 ⇒  I =(1/(2(√r)e^((iθ)/2) )){iπ−(−iπ)} =((2iπ)/(2(√r)e^((iθ)/2) )) =((iπ)/( (√r)e^((iθ)/2) ))  if θ<0  weget  I =(1/(2(√r)e^((iθ)/2) )){−iπ−(iπ)} =−((iπ)/( (√r)e^((iθ)/2) ))
letI=+dxx2zletz=reiθI=+dxx2(reiθ2)2=+dx(xreiθ2)(x+reiθ2)=12reiθ2+{1xreiθ21x+reiθ2}dx=12reiθ2{+dxxreiθ2+dxx(reiθ2)}wehaveprovedthatforaC+dxxa=iπifIm(a)>0andiπifIm(a)<0soifθ>0I=12reiθ2{iπ(iπ)}=2iπ2reiθ2=iπreiθ2ifθ<0wegetI=12reiθ2{iπ(iπ)}=iπreiθ2

Leave a Reply

Your email address will not be published. Required fields are marked *