Menu Close

calculate-dx-x-4-x-2-1-




Question Number 67310 by mathmax by abdo last updated on 25/Aug/19
calculate ∫_(−∞) ^(+∞)   (dx/(x^4  +x^2  +1))
calculate+dxx4+x2+1
Commented by mathmax by abdo last updated on 25/Aug/19
let I =∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +1)) ⇒I =2 ∫_0 ^(+∞)  (dx/(x^4  +x^2  +1))  we have x^4   +x^2  +1 =(x^2 +1)^2 −2x^2  +x^2  =(x^2  +1)^2 −x^2   =(x^2 −x+1)(x^2 +x+1) ⇒ I =2 ∫_0 ^(+∞)  (dx/((x^2  +x+1)(x^2 −x+1)))  let decompose F(x) =(1/((x^2  +x+1)(x^2 −x+1)))   F(x) =((ax+b)/(x^2  +x +1)) +((cx+d)/(x^2 −x+1))  F(−x)=F(x) ⇒((−ax+b)/(x^2 −x+1)) +((−cx+d)/(x^2 +x+1)) =F(x) ⇒  c=−a and d=b ⇒F(x) =((ax+b)/(x^2  +x+1)) +((−ax+b)/(x^2 −x +1))  F(0) =1 =2b ⇒b =(1/2)  F(1) =(1/3) =((a+b)/3) +b−a ⇒3 =a+b+3b−3a =−2a+2 ⇒1 =−2a ⇒  a=−(1/2) ⇒ F(x) =((−(1/2)x+(1/2))/(x^2  +x+1)) +(((1/2)x+(1/2))/(x^2 −x +1))  =(1/2){((−x+1)/(x^2  +x+1))+((x+1)/(x^2 −x +1))} ⇒∫_0 ^(+∞) F(x)dx  =−(1/2)   ∫_0 ^∞   ((x−1)/(x^2  +x+1))dx +(1/2)∫_0 ^∞    ((x+1)/(x^2 −x+1))dx  =−(1/4)∫_0 ^∞ ((2x+1−3)/(x^2  +x+1))dx +(1/4)∫_0 ^∞   ((2x−1+3)/(x^2 −x +1))dx  =(1/4)[ln∣((x^2 −x+1)/(x^2  +x+1))∣]_0 ^(+∞)  +(3/4)∫_0 ^∞   (dx/(x^2 −x +1)) +(3/4)∫_0 ^∞   (dx/(x^2  +x+1))  =0 +(3/4) ∫_0 ^∞   (dx/(x^2 −x+1)) +(3/4)∫_0 ^∞  (dx/(x^2  +x +1))  ∫_0 ^∞    (dx/(x^2 −x +1)) =∫_0 ^∞   (dx/((x−(1/2))^2 +(3/4))) =_(x−(1/2)=((√3)/2)u)  (4/3)  ∫_(−(1/( (√3)))) ^(+∞)   (1/(u^2  +1))((√3)/2)du  =(2/( (√3)))[arctanu]_(−(1/( (√3)))) ^(+∞)  =(2/( (√3))){ (π/2) +arctan((1/( (√3))))}=(2/( (√3))){(π/2)+(π/6)}  =(2/( (√3))){((2π)/3)} =((4π)/(3(√3)))  ∫_0 ^∞     (dx/(x^2  +x +1)) =∫_0 ^∞     (dx/((x+(1/2))^(2 )  +(3/4))) =_(x+(1/2)=((√3)/2)u) (4/3) ∫_(1/( (√3))) ^∞    (1/(u^2  +1))((√3)/2)du  =((2(√3))/3)[arctan(u)]_(1/( (√3))) ^(+∞)  =(2/( (√3))){(π/2)−(π/6)}=(2/( (√3))){(π/3)} =((2π)/(3(√3))) ⇒  ∫_0 ^∞  F(x)dx =(3/4)×((4π)/(3(√3))) +(3/4)×((2π)/(3(√3))) =(π/( (√3))) +(π/(2(√3))) =(3/2)(π/( (√3)))  we have I =2 ∫_0 ^∞  F(x)dx =((3π)/( (√3))) =π(√3)
letI=+dxx4+x2+1I=20+dxx4+x2+1wehavex4+x2+1=(x2+1)22x2+x2=(x2+1)2x2=(x2x+1)(x2+x+1)I=20+dx(x2+x+1)(x2x+1)letdecomposeF(x)=1(x2+x+1)(x2x+1)F(x)=ax+bx2+x+1+cx+dx2x+1F(x)=F(x)ax+bx2x+1+cx+dx2+x+1=F(x)c=aandd=bF(x)=ax+bx2+x+1+ax+bx2x+1F(0)=1=2bb=12F(1)=13=a+b3+ba3=a+b+3b3a=2a+21=2aa=12F(x)=12x+12x2+x+1+12x+12x2x+1=12{x+1x2+x+1+x+1x2x+1}0+F(x)dx=120x1x2+x+1dx+120x+1x2x+1dx=1402x+13x2+x+1dx+1402x1+3x2x+1dx=14[lnx2x+1x2+x+1]0++340dxx2x+1+340dxx2+x+1=0+340dxx2x+1+340dxx2+x+10dxx2x+1=0dx(x12)2+34=x12=32u4313+1u2+132du=23[arctanu]13+=23{π2+arctan(13)}=23{π2+π6}=23{2π3}=4π330dxx2+x+1=0dx(x+12)2+34=x+12=32u43131u2+132du=233[arctan(u)]13+=23{π2π6}=23{π3}=2π330F(x)dx=34×4π33+34×2π33=π3+π23=32π3wehaveI=20F(x)dx=3π3=π3
Commented by MJS last updated on 26/Aug/19
∫(dx/(x^4 +x^2 +1))=  =∫(−((2x−1)/(4(x^2 −x+1)))+(1/(4(x^2 −x+1)))+((2x+1)/(4(x^2 +x+1)))+(1/(4(x^2 +x+1))))dx=  =−(1/4)ln (x^2 −x+1) +((√3)/6)arctan (((√3)(2x−1))/3) +(1/4)ln (x^2 +x+1) +((√3)/6)arctan (((√3)(2x+1))/3) =  =(1/4)ln ((x^2 +x+1)/(x^2 −x+1)) +((√3)/6)(arctan (((√3)(2x−1))/3) +arctan (((√3)(2x+1))/3)) +C  ∫_(−∞) ^(+∞) (dx/(x^4 +x^2 +1))=((π(√3))/3)
dxx4+x2+1==(2x14(x2x+1)+14(x2x+1)+2x+14(x2+x+1)+14(x2+x+1))dx==14ln(x2x+1)+36arctan3(2x1)3+14ln(x2+x+1)+36arctan3(2x+1)3==14lnx2+x+1x2x+1+36(arctan3(2x1)3+arctan3(2x+1)3)+C+dxx4+x2+1=π33
Answered by Kunal12588 last updated on 25/Aug/19
(1/2)∫((2/x^2 )/(x^2 +1+(1/x^2 )))dx=(1/2)∫((1+(1/x^2 ))/(x^2 +(1/x^2 )+1))dx−(1/2)∫((1−(1/x^2 ))/(x^2 +(1/x^2 )+1))dx  (x+(1/x))=t⇒(1−(1/x^2 ))dx=dt  (x−(1/x))=u⇒(1+(1/x^2 ))dx=du  x^2 +(1/x^2 )+1=t^2 −1 and x^2 +(1/x^2 )+1=u^2 +3  I=(1/2)∫(du/(u^2 +3))−(1/2)∫(dt/(t^2 −1))  =(1/2)×(1/( (√3)))×tan^(−1) ((u/( (√3))))−(1/2)×(1/2)ln∣((t−1)/(t+1))∣+C  =(1/(2(√3))) tan^(−1) (((x^2 −1)/(x(√3))))−(1/4) ln∣((x^2 −x+1)/(x^2 +x+1))∣+C  I_1 =∫_(−∞) ^(+∞)   (dx/(x^4  +x^2  +1))=[I ]_(−∞) ^(+∞)   lim_(x→+∞)  I = (1/(2(√3))) lim_(x→+∞) arctan((x/( (√3)))−(1/(x(√3))))−(1/4) lim_(x→+∞)  ln∣((1−(1/x)+(1/x^2 ))/(1+(1/x)+(1/x^2 )))∣  = (1/(2(√3))) lim_(x→+∞) arctan((x/( (√3)))−(1/(x(√3))))−(1/4) lim_(x→+∞)  ln∣1∣  = (1/(2(√3)))×(π/2)−0=(π/(4(√3)))  lim_(x→−∞) I= (1/(2(√3))) lim_(x→−∞)  arctan((x/( (√3)))−(1/(x(√3))))−0  =(1/(2(√3)))×((−π)/2)=−(π/(4(√3)))  I_1 =(π/(4(√3)))+(π/(4(√3)))=(π/(2(√3)))
122x2x2+1+1x2dx=121+1x2x2+1x2+1dx1211x2x2+1x2+1dx(x+1x)=t(11x2)dx=dt(x1x)=u(1+1x2)dx=dux2+1x2+1=t21andx2+1x2+1=u2+3I=12duu2+312dtt21=12×13×tan1(u3)12×12lnt1t+1+C=123tan1(x21x3)14lnx2x+1x2+x+1+CI1=+dxx4+x2+1=[I]+limx+I=123limarctanx+(x31x3)14limx+ln11x+1x21+1x+1x2=123limarctanx+(x31x3)14limx+ln1=123×π20=π43limIx=123limxarctan(x31x3)0=123×π2=π43I1=π43+π43=π23
Commented by mathmax by abdo last updated on 25/Aug/19
thanks a lots for this hard work.
thanksalotsforthishardwork.
Commented by Kunal12588 last updated on 26/Aug/19
but it seems wrong. can u pls check where it  goes wrong
butitseemswrong.canuplscheckwhereitgoeswrong
Commented by mathmax by abdo last updated on 26/Aug/19
give opportunity to the method...
giveopportunitytothemethod

Leave a Reply

Your email address will not be published. Required fields are marked *