Menu Close

calculate-f-a-0-1-ln-1-ax-3-dx-with-0-lt-a-lt-1-




Question Number 78266 by msup trace by abdo last updated on 15/Jan/20
calculate f(a)=∫_0 ^1 ln(1−ax^3 )dx  with 0<a<1
calculatef(a)=01ln(1ax3)dxwith0<a<1
Commented by mathmax by abdo last updated on 18/Jan/20
f(a) =∫_0 ^1 ln(1−(^3 (√a)x)^3 )dx =_((^3 (√a)x)=t)    ∫_0 ^((^3 (√a))) ln(1−t^3 )(dt/((^3 (√a))))  =(1/((^3 (√a)))) ∫_0 ^((^3 (√a))) ln(1−t^3 )dt  we have ln(1−u))^((1)) =−(1/(1−u))  =−Σ_(n=0) ^∞ u^n  ⇒ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (u^n /n)  we have 0<(^3 (√a))<1 ⇒ln(1−t^3 )=−Σ_(n=1) ^∞  (t^(3n) /n) ⇒  ∫_0 ^((^3 (√a))) ln(1−t^3 )dt =−Σ_(n=1) ^∞  (1/n) ∫_0 ^((^3 (√a)))  t^(3n)  dt  =−Σ_(n=1) ^∞  (1/(n(3n+1)))[ t^(3n+1) ]_0 ^((^3 (√a)))  =−Σ_(n=1) ^∞  (((^3 (√a))a^n )/(n(3n+1))) ⇒  f(a) =−Σ_(n=1) ^∞  (a^n /(n(3n+1))) ⇒−(1/3)f(a) =Σ_(n=1) ^∞  (a^n /(3n(3n+1)))  =Σ_(n=1) ^∞ ((1/(3n))−(1/(3n+1)))a^n  =(1/3)Σ_(n=1) ^∞  (a^n /n)−Σ_(n=1) ^∞  (a^n /(3n+1))  =−(1/3)ln(1−a)−Σ_(n=1) ^∞  (a^n /(3n+1))    Σ_(n=1) ^∞  (a^n /(3n+1)) =Σ_(n=1) ^∞ ((((^3 (√a))^(3n+1) )/(3n+1)))×(1/((^3 (√a)))) =(1/((^3 (√a))))W(^3 (√a)) with  w(x)=Σ_(n=1) ^∞  (x^(3n+1) /(3n+1)) ⇒w^′ (x)=Σ_(n=1) ^∞  x^(3n)  =(1/(1−x^3 ))−1 ⇒  w(x)=∫_0 ^x ((1/(1−t^3 ))−1)dt +c =−x +∫_0 ^x  (dt/((1−t^3 ))) =−x−∫_0 ^x  (dt/(t^3 −1))  let decompose F(t) =(1/(t^3 −1)) =(1/((t−1)(t^2  +t+1)))  F(t)=(a/(t−1)) +((bt+c)/(t^2  +t +1))
f(a)=01ln(1(3ax)3)dx=(3ax)=t0(3a)ln(1t3)dt(3a)=1(3a)0(3a)ln(1t3)dtwehaveln(1u))(1)=11u=n=0unln(1u)=n=0un+1n+1=n=1unnwehave0<(3a)<1ln(1t3)=n=1t3nn0(3a)ln(1t3)dt=n=11n0(3a)t3ndt=n=11n(3n+1)[t3n+1]0(3a)=n=1(3a)ann(3n+1)f(a)=n=1ann(3n+1)13f(a)=n=1an3n(3n+1)=n=1(13n13n+1)an=13n=1annn=1an3n+1=13ln(1a)n=1an3n+1n=1an3n+1=n=1((3a)3n+13n+1)×1(3a)=1(3a)W(3a)withw(x)=n=1x3n+13n+1w(x)=n=1x3n=11x31w(x)=0x(11t31)dt+c=x+0xdt(1t3)=x0xdtt31letdecomposeF(t)=1t31=1(t1)(t2+t+1)F(t)=at1+bt+ct2+t+1
Commented by mathmax by abdo last updated on 18/Jan/20
a =(t−1)F(t)∣_(t=1) =(1/3)  lim_(t→+∞) tF(t) =0 =a+b ⇒b =−(1/3)  F(0)=−a +c =−1 ⇒c =a−1 =(1/3)−1 =−(2/3) ⇒  F(t)=(1/(3(t−1))) −(1/3)((t+2)/(t^2  +t +1)) ⇒ ∫ F(t)dt =(1/3)ln∣t−1∣−(1/6)∫((2t+1+3)/(t^2  +t+1))dt  =(1/3)ln∣t−1∣−(1/6)ln(t^2  +t +1)−(1/2) ∫ (dt/(t^2  +t +1))  ∫  (dt/(t^2  +t +1)) =∫  (dt/((t+(1/2))^2  +(3/4))) =_(t+(1/2)=((√3)/2)u)  (4/3) ∫  (1/(u^2  +1))×((√3)/2)du  =(2/( (√3))) arctan(((2t+1)/( (√3)))) ⇒∫_0 ^x  F(t)dt =[(1/3)ln∣t−1∣−(1/6)ln(t^2  +t +1)]_0 ^x   −(1/( (√3)))[ arctan(((2t+1)/( (√3))))]_0 ^x =(1/3)ln∣x−1∣−(1/6)ln(x^2  +x+1)  −(1/( (√3))){ arctan(((2x+1)/( (√3))))−arctan((1/( (√3)))) ⇒  w(x)=x−(1/3)ln∣x−1∣+(1/6)ln(x^2  +x+1)+(1/( (√3))){ arctan(((2x+1)/( (√3))))−(π/6)}  ⇒f(a)=−(1/3)ln(1−a)−(1/((^3 (√a))))w(^3 (√a))  f(a) =−(1/3)ln(1−a)−(1/((^3 (√a)))){^3 (√a)−(1/3)ln∣^3 (√a)−1∣+(1/6)ln((^3 (√a))^2  +^3 (√a)+1)  +(1/( (√3))) arctan(((2(^3 (√a))+1)/( (√3))))−(π/(6(√3)))}
a=(t1)F(t)t=1=13limt+tF(t)=0=a+bb=13F(0)=a+c=1c=a1=131=23F(t)=13(t1)13t+2t2+t+1F(t)dt=13lnt1162t+1+3t2+t+1dt=13lnt116ln(t2+t+1)12dtt2+t+1dtt2+t+1=dt(t+12)2+34=t+12=32u431u2+1×32du=23arctan(2t+13)0xF(t)dt=[13lnt116ln(t2+t+1)]0x13[arctan(2t+13)]0x=13lnx116ln(x2+x+1)13{arctan(2x+13)arctan(13)w(x)=x13lnx1+16ln(x2+x+1)+13{arctan(2x+13)π6}f(a)=13ln(1a)1(3a)w(3a)f(a)=13ln(1a)1(3a){3a13ln3a1+16ln((3a)2+3a+1)+13arctan(2(3a)+13)π63}
Answered by mind is power last updated on 15/Jan/20
ln(1−ax^3 )=  ln(1−ax^3 )=−Σ_(k≥1) ((a^k x^(3k) )/k)  f(a)=−∫_0 ^1 Σ_(k≥1) (a^k /k).x^(3k) dx  =−Σ_(k≥1) (a^k /(k(3k+1)))  =−(1/3){Σ_(k≥1) (a^k /k)−Σ_(k≥1) (a^(3k) /(3k+1))}  =−(1/3)Σ_(k≥1) (a^k /k)+(1/3)Σ_(k≥1) (a^(3k) /(3k+1))  =((ln(1−a))/3)+(1/(3a)).Σ_(k≥1) (a^(3k+1) /(3k+1))  g(a)=Σ_(k≥1) (a^(3k+1) /(3k+1))⇒g′(a)=Σ_(k≥1) a^(3k) =(a^3 /(1−a^3 ))  g(a)=∫_0 ^a (x^3 /(1−x^3 ))dx=∫_0 ^a (−1+(1/(1−x^3 )))dx  =−a+∫_0 ^a (dx/((1−x)(1+x+x^2 )))=−a+∫_0 ^a (1/3){(1/((1−x)))+((x+2)/(1+x+x^2 ))}dx  =−a+(1/3)∫_0 ^a ((1/(1−x))+((x+(1/2))/(1+x+x^2 ))+(3/2).(1/((x+(1/2))^2 +(3/4))))dx  =−a+((ln(1−a))/3)+(1/6)ln(1+a+a^2 )+(2/3)∫_0 ^a (dx/((((2x+1)/( (√3))))^2 +1))  g(a)=−a+((ln(1−a))/3)+((ln(1+a+a^2 ))/6)+(1/( (√3))){arctan(((2a+1)/( (√3))))−(π/6)}  f(a)=((ln(1−a))/3)+(1/(3a))g(a)  =−(1/3)+(1/(3a))(aln(1−a)+ln(1−a))+((ln(1+a+a^2 ))/(18a))+(1/(3a(√3))){arctan(((2a+1)/( (√3))))−(π/6)}
ln(1ax3)=ln(1ax3)=k1akx3kkf(a)=01k1akk.x3kdx=k1akk(3k+1)=13{k1akkk1a3k3k+1}=13k1akk+13k1a3k3k+1=ln(1a)3+13a.k1a3k+13k+1g(a)=k1a3k+13k+1g(a)=k1a3k=a31a3g(a)=0ax31x3dx=0a(1+11x3)dx=a+0adx(1x)(1+x+x2)=a+0a13{1(1x)+x+21+x+x2}dx=a+130a(11x+x+121+x+x2+32.1(x+12)2+34)dx=a+ln(1a)3+16ln(1+a+a2)+230adx(2x+13)2+1g(a)=a+ln(1a)3+ln(1+a+a2)6+13{arctan(2a+13)π6}f(a)=ln(1a)3+13ag(a)=13+13a(aln(1a)+ln(1a))+ln(1+a+a2)18a+13a3{arctan(2a+13)π6}
Commented by msup trace by abdo last updated on 15/Jan/20
thank you sir.
thankyousir.
Commented by mind is power last updated on 15/Jan/20
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *