Question Number 78266 by msup trace by abdo last updated on 15/Jan/20

Commented by mathmax by abdo last updated on 18/Jan/20
![f(a) =∫_0 ^1 ln(1−(^3 (√a)x)^3 )dx =_((^3 (√a)x)=t) ∫_0 ^((^3 (√a))) ln(1−t^3 )(dt/((^3 (√a)))) =(1/((^3 (√a)))) ∫_0 ^((^3 (√a))) ln(1−t^3 )dt we have ln(1−u))^((1)) =−(1/(1−u)) =−Σ_(n=0) ^∞ u^n ⇒ln(1−u) =−Σ_(n=0) ^∞ (u^(n+1) /(n+1)) =−Σ_(n=1) ^∞ (u^n /n) we have 0<(^3 (√a))<1 ⇒ln(1−t^3 )=−Σ_(n=1) ^∞ (t^(3n) /n) ⇒ ∫_0 ^((^3 (√a))) ln(1−t^3 )dt =−Σ_(n=1) ^∞ (1/n) ∫_0 ^((^3 (√a))) t^(3n) dt =−Σ_(n=1) ^∞ (1/(n(3n+1)))[ t^(3n+1) ]_0 ^((^3 (√a))) =−Σ_(n=1) ^∞ (((^3 (√a))a^n )/(n(3n+1))) ⇒ f(a) =−Σ_(n=1) ^∞ (a^n /(n(3n+1))) ⇒−(1/3)f(a) =Σ_(n=1) ^∞ (a^n /(3n(3n+1))) =Σ_(n=1) ^∞ ((1/(3n))−(1/(3n+1)))a^n =(1/3)Σ_(n=1) ^∞ (a^n /n)−Σ_(n=1) ^∞ (a^n /(3n+1)) =−(1/3)ln(1−a)−Σ_(n=1) ^∞ (a^n /(3n+1)) Σ_(n=1) ^∞ (a^n /(3n+1)) =Σ_(n=1) ^∞ ((((^3 (√a))^(3n+1) )/(3n+1)))×(1/((^3 (√a)))) =(1/((^3 (√a))))W(^3 (√a)) with w(x)=Σ_(n=1) ^∞ (x^(3n+1) /(3n+1)) ⇒w^′ (x)=Σ_(n=1) ^∞ x^(3n) =(1/(1−x^3 ))−1 ⇒ w(x)=∫_0 ^x ((1/(1−t^3 ))−1)dt +c =−x +∫_0 ^x (dt/((1−t^3 ))) =−x−∫_0 ^x (dt/(t^3 −1)) let decompose F(t) =(1/(t^3 −1)) =(1/((t−1)(t^2 +t+1))) F(t)=(a/(t−1)) +((bt+c)/(t^2 +t +1))](https://www.tinkutara.com/question/Q78586.png)
Commented by mathmax by abdo last updated on 18/Jan/20
![a =(t−1)F(t)∣_(t=1) =(1/3) lim_(t→+∞) tF(t) =0 =a+b ⇒b =−(1/3) F(0)=−a +c =−1 ⇒c =a−1 =(1/3)−1 =−(2/3) ⇒ F(t)=(1/(3(t−1))) −(1/3)((t+2)/(t^2 +t +1)) ⇒ ∫ F(t)dt =(1/3)ln∣t−1∣−(1/6)∫((2t+1+3)/(t^2 +t+1))dt =(1/3)ln∣t−1∣−(1/6)ln(t^2 +t +1)−(1/2) ∫ (dt/(t^2 +t +1)) ∫ (dt/(t^2 +t +1)) =∫ (dt/((t+(1/2))^2 +(3/4))) =_(t+(1/2)=((√3)/2)u) (4/3) ∫ (1/(u^2 +1))×((√3)/2)du =(2/( (√3))) arctan(((2t+1)/( (√3)))) ⇒∫_0 ^x F(t)dt =[(1/3)ln∣t−1∣−(1/6)ln(t^2 +t +1)]_0 ^x −(1/( (√3)))[ arctan(((2t+1)/( (√3))))]_0 ^x =(1/3)ln∣x−1∣−(1/6)ln(x^2 +x+1) −(1/( (√3))){ arctan(((2x+1)/( (√3))))−arctan((1/( (√3)))) ⇒ w(x)=x−(1/3)ln∣x−1∣+(1/6)ln(x^2 +x+1)+(1/( (√3))){ arctan(((2x+1)/( (√3))))−(π/6)} ⇒f(a)=−(1/3)ln(1−a)−(1/((^3 (√a))))w(^3 (√a)) f(a) =−(1/3)ln(1−a)−(1/((^3 (√a)))){^3 (√a)−(1/3)ln∣^3 (√a)−1∣+(1/6)ln((^3 (√a))^2 +^3 (√a)+1) +(1/( (√3))) arctan(((2(^3 (√a))+1)/( (√3))))−(π/(6(√3)))}](https://www.tinkutara.com/question/Q78587.png)
Answered by mind is power last updated on 15/Jan/20

Commented by msup trace by abdo last updated on 15/Jan/20

Commented by mind is power last updated on 15/Jan/20
