Menu Close

calculate-f-a-0-1-x-2-ax-1-dx-and-g-a-0-1-xdx-x-2-ax-1-with-a-lt-2-2-find-the-value-of-0-1-x-2-2-x-1-dx-and-0-1-xdx-x-2-2-x-1-




Question Number 74223 by mathmax by abdo last updated on 20/Nov/19
calculate  f(a)=∫_0 ^1 (√(x^2 +ax+1))dx   and g(a)=∫_0 ^1   ((xdx)/( (√(x^2 +ax+1))))  with  ∣a∣<2  2)find the value of  ∫_0 ^1 (√(x^2 +(√2)x+1))dx and ∫_0 ^1   ((xdx)/( (√(x^2 +(√2)x+1))))
calculatef(a)=01x2+ax+1dxandg(a)=01xdxx2+ax+1witha∣<22)findthevalueof01x2+2x+1dxand01xdxx2+2x+1
Answered by mind is power last updated on 20/Nov/19
f(a)=∫_0 ^1 (√((x+(a/2))^2 +((4−a^2 )/4)))dx  let (x+(a/2))=(√((4−a^2 )/4)) sh(u)  ⇒dx=(√((4−a^2 )/4)).ch(u)du  ∫_(argsh((a/( (√(4−a^2 )))))) ^(argsh((√((a+2)/(2−a))))) .((4−a^2 )/4).ch^2 (u)du  =∫((4−a^2 )/4).(((ch(2u)+1)/2))du  =((4−a^2 )/4)[((sh(2u))/4)+(u/2)]_(argsh((a/( (√(4−a^2 )))))) ^(argsh((√((a+2)/(2−a)))))   sh(2u)=2sh(u)ch(u)  sh(2argsh(t))=2t.(√(1+t^2 ))  =((4−a^2 )/4)  [(((√((a+2)/(2−a)))(√(4/(2−a)))−(a/( (√(4−a^2 ))))(√((4−a^2 +a)/(4−a^2 ))))/2)+  (1/2)argsh((√((a+2)/(2−a))))−(1/2)argsh((a/( (√(4−a^2 )))))=f(a)  g(a)=2f′(a)  2)=f((√2)),g((√2))
f(a)=01(x+a2)2+4a24dxlet(x+a2)=4a24sh(u)dx=4a24.ch(u)duargsh(a4a2)argsh(a+22a).4a24.ch2(u)du=4a24.(ch(2u)+12)du=4a24[sh(2u)4+u2]argsh(a4a2)argsh(a+22a)sh(2u)=2sh(u)ch(u)sh(2argsh(t))=2t.1+t2=4a24[a+22a42aa4a24a2+a4a22+12argsh(a+22a)12argsh(a4a2)=f(a)g(a)=2f(a)2)=f(2),g(2)
Commented by mathmax by abdo last updated on 20/Nov/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *