Menu Close

calculate-f-a-b-0-e-ax-2-x-2-b-2-dx-with-a-gt-0-and-b-gt-0-




Question Number 143082 by Mathspace last updated on 09/Jun/21
calculate f(a,b)=∫_0 ^∞  (e^(−ax^2 ) /(x^2  +b^2 ))dx  with a>0 and b>0
calculatef(a,b)=0eax2x2+b2dxwitha>0andb>0
Answered by Dwaipayan Shikari last updated on 09/Jun/21
=∫_0 ^∞ e^(−ax^2 ) ∫_0 ^∞ e^(−t(x^2 +b)) dxdt  =((√π)/2)∫_0 ^∞ (e^(−tb) /( (√(t+a))))dt          t+a=u^2   =(√π)e^(ab) ∫_(√a) ^∞ e^(−u^2 ) du  =(√π)e^(ab) (((√π)/2)−((√π)/2)erf((√a)))=(π/2)e^(ab) (erfc((√a)))
=0eax20et(x2+b)dxdt=π20etbt+adtt+a=u2=πeabaeu2du=πeab(π2π2erf(a))=π2eab(erfc(a))
Answered by mathmax by abdo last updated on 10/Jun/21
f(a,b)=∫_0 ^∞  (e^(−ax^2 ) /(x^2  +b^2 ))dx =∫_0 ^∞ (∫_0 ^∞ e^(−(x^2 +b^2 )t) dt)e^(−ax^2 ) dx  =∫_0 ^∞ (∫_0 ^∞ e^(−(t+a)x^2 ) dx)e^(−b^2 t) dt [but  ∫_0 ^∞  e^(−(t+a)x^2 ) dx =_((√(t+a))x=y)   ∫_(√a) ^∞  e^(−y^2 ) (dy/( (√(t+a)))) ⇒  f(a,b)=∫_(√a) ^∞  e^(−y^2 ) dy.∫_0 ^∞  (e^(−b^2 t) /( (√(t+a))))dt   (let λ_0 =∫_(√a) ^∞  e^(−y^2 ) dy)  =_(t+a=z^2 )   λ_0 ∫_(√a) ^∞  (e^(−b^2 (z^2 −a)) /z)(2z)dz =2λ_0 e^(ab^2 ) ∫_(√a) ^∞   e^(−b^2 z^2 ) dz  =_(bz=u)    2λ_0 e^(ab^2 ) ∫_(b(√a)) ^∞  e^(−u^2 ) (du/b)  =((2λ_0 )/b)e^(ab^2 ) ∫_(b(√a)) ^∞  e^(−u^2 ) du
f(a,b)=0eax2x2+b2dx=0(0e(x2+b2)tdt)eax2dx=0(0e(t+a)x2dx)eb2tdt[but0e(t+a)x2dx=t+ax=yaey2dyt+af(a,b)=aey2dy.0eb2tt+adt(letλ0=aey2dy)=t+a=z2λ0aeb2(z2a)z(2z)dz=2λ0eab2aeb2z2dz=bz=u2λ0eab2baeu2dub=2λ0beab2baeu2du

Leave a Reply

Your email address will not be published. Required fields are marked *