calculate-f-x-0-e-xt-2-4-t-2-dt-with-x-gt-0- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 72988 by mathmax by abdo last updated on 05/Nov/19 calculatef(x)=∫0∞e−xt24+t2dtwithx>0 Commented by mathmax by abdo last updated on 05/Nov/19 wehavef(x)=∫0∞e−x(t2+4−4)t2+4dt=e4x∫0∞e−x(t2+4)t2+4dt=e4xw(x)withw(x)=∫0∞e−x(t2+4)t2+4dt⇒w′(x)=−∫0+∞e−x(t2+4)dt=−e−4x∫0∞e−(xt)2dt=xt=u−e−4x∫0∞e−u2dux=−e−4xx×π2⇒w(x)=−π2∫0xe−4uudu+c=u=z−π2∫0xe−4z2z(2z)dz+c=−π∫0xe−4z2dz+c⇒f(x)=ce4x−πe4x∫0xe−4z2dzc=limx→0f(x)=∫0∞dtt2+4=t=2u∫0∞2du4(1+u2)=12π2=π4⇒f(x)=π4e4x−πe4x∫0xe−4z2dz Answered by mind is power last updated on 05/Nov/19 f′(x)=∫0+∞−t2e−xt24+t2=∫−e−xt2+4∫0+∞e−xt24+t2dt=⇒f′(x)=4f(x)−1x∫0+∞e−(tx)2.xdt⇒f′(x)=4f(x)−1x.∫0+∞e−u2du=4f(x)−12x.π2f′(x)−4f(x)+12x.π2=0f(x)=ke4x⇒k′(x)=−e−4x2xπ2=⇒k(x)=−π22∫e−4x2xdxerf(x)=∫0xe−t2dtx=u⇒k(x)=−π22∫e−4u2du=−π42∫e−w2dw=−π42erf(w)=π42erf(2u)=−π42erf(2x)+c⇒f(x)=ce−4x−π42erf(2x)e−4xf(0)=∫0+∞14+t2=[12.arctan(t2)]=π4⇒c=π4f(x)=π4e−4x−π42erf(2x)e−4x Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-7453Next Next post: The-area-of-the-equilateral-triangle-is-equal-to-16-8-3-pi-Calculate-the-area-of-the-circle-inscribed-in-the-triangle- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.