Menu Close

calculate-f-x-0-e-xt-2-4-t-2-dt-with-x-gt-0-




Question Number 72988 by mathmax by abdo last updated on 05/Nov/19
calculate f(x)=∫_0 ^∞     (e^(−xt^2 ) /(4+t^2 ))dt   with x>0
calculatef(x)=0ext24+t2dtwithx>0
Commented by mathmax by abdo last updated on 05/Nov/19
we have f(x)=∫_0 ^∞  (e^(−x(t^2 +4−4)) /(t^2  +4))dt =e^(4x) ∫_0 ^∞   (e^(−x(t^2 +4)) /(t^2  +4))dt  =e^(4x) w(x) with w(x)=∫_0 ^∞  (e^(−x(t^2  +4)) /(t^2  +4))dt ⇒  w^′ (x)=−∫_0 ^(+∞)   e^(−x(t^2 +4)) dt =−e^(−4x)  ∫_0 ^∞  e^(−((√x)t)^2 ) dt  =_((√x)t =u)   −  e^(−4x) ∫_0 ^∞   e^(−u^2 ) (du/( (√x))) =−(e^(−4x) /( (√x)))×((√π)/2) ⇒w(x)=−((√π)/2)∫_0 ^x   (e^(−4u) /( (√u)))du +c  =_((√u)=z) −   ((√π)/2) ∫_0 ^(√x)   (e^(−4z^2 ) /z)(2z)dz+c =−(√π)∫_0 ^(√x)  e^(−4z^2 ) dz +c⇒  f(x)=c e^(4x)  −(√π)e^(4x)  ∫_0 ^(√x)  e^(−4z^2 ) dz  c=lim_(x→0) f(x) =∫_0 ^∞   (dt/(t^2  +4)) =_(t=2u)   ∫_0 ^∞    ((2du)/(4(1+u^2 ))) =(1/2)(π/2)=(π/4) ⇒  f(x)=(π/4)e^(4x)  −(√π)e^(4x)  ∫_0 ^(√x)  e^(−4z^2 ) dz
wehavef(x)=0ex(t2+44)t2+4dt=e4x0ex(t2+4)t2+4dt=e4xw(x)withw(x)=0ex(t2+4)t2+4dtw(x)=0+ex(t2+4)dt=e4x0e(xt)2dt=xt=ue4x0eu2dux=e4xx×π2w(x)=π20xe4uudu+c=u=zπ20xe4z2z(2z)dz+c=π0xe4z2dz+cf(x)=ce4xπe4x0xe4z2dzc=limx0f(x)=0dtt2+4=t=2u02du4(1+u2)=12π2=π4f(x)=π4e4xπe4x0xe4z2dz
Answered by mind is power last updated on 05/Nov/19
f′(x)=∫_0 ^(+∞) ((−t^2 e^(−xt^2 ) )/(4+t^2 ))=∫−e^(−xt^2 ) +4∫_0 ^(+∞) (e^(−xt^2 ) /(4+t^2 ))dt  =⇒f′(x)=4f(x)−(1/( (√x)))∫_0 ^(+∞) e^(−(t(√x))^2 ) .(√x)dt  ⇒f′(x)=4f(x)−(1/( (√x))).∫_0 ^(+∞) e^(−u^2 ) du=4f(x)−(1/(2(√x))).(√(π/2))  f′(x)−4f(x)+(1/(2(√x))).(√(π/2))=0  f(x)=ke^(4x)   ⇒k′(x)=−(e^(−4x) /(2(√x)))(√(π/2))  =⇒k(x)=−((√π)/(2(√2)))∫(e^(−4x) /(2(√x)))dx  erf(x)=∫_0 ^x e^(−t^2 ) dt  (√x)=u⇒k(x)=−((√π)/(2(√2)))∫e^(−4u^2 ) du=−((√π)/(4(√2)))∫e^(−w^2 ) dw=−((√π)/(4(√2)))erf(w)  =((√π)/(4(√2)))erf(2u)=−((√π)/(4(√2)))erf(2(√x))+c  ⇒f(x)=ce^(−4x) −((√π)/(4(√2)))erf(2(√x))e^(−4x)   f(0)=∫_0 ^(+∞) (1/(4+t^2 ))=[(1/2).arctan((t/2))]=(π/4)  ⇒c=(π/4)  f(x)=(π/4)e^(−4x) −((√π)/(4(√2)))erf(2(√x))e^(−4x)
f(x)=0+t2ext24+t2=ext2+40+ext24+t2dt=⇒f(x)=4f(x)1x0+e(tx)2.xdtf(x)=4f(x)1x.0+eu2du=4f(x)12x.π2f(x)4f(x)+12x.π2=0f(x)=ke4xk(x)=e4x2xπ2=⇒k(x)=π22e4x2xdxerf(x)=0xet2dtx=uk(x)=π22e4u2du=π42ew2dw=π42erf(w)=π42erf(2u)=π42erf(2x)+cf(x)=ce4xπ42erf(2x)e4xf(0)=0+14+t2=[12.arctan(t2)]=π4c=π4f(x)=π4e4xπ42erf(2x)e4x

Leave a Reply

Your email address will not be published. Required fields are marked *