Menu Close

calculate-f-x-2-x-dx-real-




Question Number 74888 by abdomathmax last updated on 03/Dec/19
calculate f(α)=∫(√(x^2 −x+α))dx  (α real)
calculatef(α)=x2x+αdx(αreal)
Commented by MJS last updated on 03/Dec/19
no borders?
noborders?
Commented by mathmax by abdo last updated on 03/Dec/19
yes
yes
Commented by mathmax by abdo last updated on 03/Dec/19
f(α)=∫(√(x^2 −x+α))dx  let solve x^2 −x+α =0 →Δ=1−4α  case(1) 1−4α<0 ⇒x^2 −x+α =x^2 −2(x/2)+(1/4) +α−(1/4)  =(x−(1/2))^2  +((4α−1)/4)    ( 4α−1>0) ⇒  f(α) =_(x−(1/2)=((√(4α−1))/2)sh(u))    ∫  (√((4α−1)/4))ch(u)((√(4α−1))/2)ch(u)du  =((4α−1)/4) ∫ ch^2 (u)du =((4α−1)/4) ∫((1+ch(2u))/2)du  =(((4α−1))/8) u  +((4α−1)/(16))sh(2u) +C  =(((4α−1))/8) argsh(((2x−1)/( (√(4α−1))))) +((4α−1)/8) sh(u)ch(u) +c  =(((4α−1))/8)ln(((2x−1)/( (√(4α−1)))) +(√(1+(((2x−1)/( (√(4α−1)) )))^2 ))) +((4α−1)/8)×((2x−1)/( (√(4α−1))))(√(1+(((2x−1)/( (√(4α−1)))))^2 ))+C  case (2)   1−4α>0 ⇒x_1 =((1+(√(1−4α)))/2)  and  x_2 =((1−(√(1−4α)))/2)  f(α)=∫(√((x−x_1 )(x−x_2 )))dx  changement  (√(x−x_1 ))=u givex−x_1 =u^2   f(α) =∫ u(√(u^2  +x_1 −x_2 ))(2u)du  =2 ∫ u^2 (√(u^2 +(√(1−4α)))) du  we do the changement u=(^4 (√(1−4α)))sh(z)  ⇒f(α)=2 ∫  (√(1−4α))(√(1−4α))sh^2 (z)ch(z)(^4 (√(1−4α)))ch(z)dz  =2(1−4α)(^4 (√(1−4α))) ∫ sh^2 (z)ch^2 (z)dz  =(1/2)(1−4α)^(5/4)   ∫  sh^2 (2z)dz =....be continued...
f(α)=x2x+αdxletsolvex2x+α=0Δ=14αcase(1)14α<0x2x+α=x22x2+14+α14=(x12)2+4α14(4α1>0)f(α)=x12=4α12sh(u)4α14ch(u)4α12ch(u)du=4α14ch2(u)du=4α141+ch(2u)2du=(4α1)8u+4α116sh(2u)+C=(4α1)8argsh(2x14α1)+4α18sh(u)ch(u)+c=(4α1)8ln(2x14α1+1+(2x14α1)2)+4α18×2x14α11+(2x14α1)2+Ccase(2)14α>0x1=1+14α2andx2=114α2f(α)=(xx1)(xx2)dxchangementxx1=ugivexx1=u2f(α)=uu2+x1x2(2u)du=2u2u2+14αduwedothechangementu=(414α)sh(z)f(α)=214α14αsh2(z)ch(z)(414α)ch(z)dz=2(14α)(414α)sh2(z)ch2(z)dz=12(14α)54sh2(2z)dz=.becontinued
Answered by MJS last updated on 03/Dec/19
∫(√(x^2 −x+α))dx=∫(√((x−(1/2))^2 +α−(1/4)))dx=       [t=((2x−1)/( (√(4α−1)))) → dx=((√(4α−1))/2)dt]  =((4α−1)/4)∫(√(t^2 +1))dt=  =((4α−1)/8)(t(√(t^2 +1))+ln (t+(√(t^2 +1)))=  ...  =(((2x−1)(√(x^2 −x+α)))/4)+((4α−1)/8)ln (2x−1+2(√(x^2 −x+α))) +C
x2x+αdx=(x12)2+α14dx=[t=2x14α1dx=4α12dt]=4α14t2+1dt==4α18(tt2+1+ln(t+t2+1)==(2x1)x2x+α4+4α18ln(2x1+2x2x+α)+C

Leave a Reply

Your email address will not be published. Required fields are marked *