Menu Close

calculate-I-0-pi-2-4-tanx-log-tanx-dx-and-J-0-pi-2-log-tanx-3-tanx-dx-




Question Number 141218 by mathmax by abdo last updated on 16/May/21
calculate  I =∫_0 ^(π/2) ^4 (√(tanx))log(tanx)dx  and  J =∫_0 ^(π/2) ((log(tanx))/((^3 (√(tanx)))))dx
calculateI=0π24tanxlog(tanx)dxandJ=0π2log(tanx)(3tanx)dx
Answered by Ar Brandon last updated on 16/May/21
f(α)=∫_0 ^(π/2) tan^α xdx=(1/2)Γ(((α+1)/2))Γ(((1−α)/2))=(π/(2sin(((1−α)/2)π)))  f((1/4))=((Γ((5/8))Γ((3/8)))/2)=(π/(2sin(((3π)/8))))★  ln(f(α))=ln((π/2))−lnsin(((1−α)/2)π)  ((f ′(α))/(f(α)))=(π/2)∙tan(((1−α)/2)π)⇒f ′(α)=f(α){(π/2)∙tan(((1−α)/2)π)}  f ′((1/4))=f((1/4)){(π/2)∙tan(((3π)/( 8)))}  I=(π^2 /4)tan(((3π)/8))cosec(((3π)/8))
f(α)=0π2tanαxdx=12Γ(α+12)Γ(1α2)=π2sin(1α2π)f(14)=Γ(58)Γ(38)2=π2sin(3π8)ln(f(α))=ln(π2)lnsin(1α2π)f(α)f(α)=π2tan(1α2π)f(α)=f(α){π2tan(1α2π)}f(14)=f(14){π2tan(3π8)}I=π24tan(3π8)cosec(3π8)
Answered by Ar Brandon last updated on 16/May/21
f(α)=∫_0 ^(π/2) tan^α xdx=(1/2)Γ(((α+1)/2))Γ(((1−α)/2))=(π/(2sin(((1+α)/2)π)))  f(−(1/3))=(π/(2sin((π/3))))★  ln(f(α))=ln((π/2))−lnsin(((1+α)/2)π)  ((f ′(α))/(f(α)))=(π/2)∙tan(((1+α)/2)π)⇒f ′(α)=f(α){(π/2)∙tan(((1+α)/2)π)}  f ′(−(1/3))=f(−(1/3)){(π/2)∙tan((π/( 3)))}  J=(π^2 /4)tan((π/3))cosec((π/3))
f(α)=0π2tanαxdx=12Γ(α+12)Γ(1α2)=π2sin(1+α2π)f(13)=π2sin(π3)ln(f(α))=ln(π2)lnsin(1+α2π)f(α)f(α)=π2tan(1+α2π)f(α)=f(α){π2tan(1+α2π)}f(13)=f(13){π2tan(π3)}J=π24tan(π3)cosec(π3)
Commented by Ar Brandon last updated on 16/May/21
f ′(α)=(π^2 /4)tan(((1−α)/2)π)cosec(((1−α)/2)π)
f(α)=π24tan(1α2π)cosec(1α2π)
Answered by mathmax by abdo last updated on 16/May/21
let f(a) =∫_0 ^(π/2) (tanx)^a  dx  ⇒f(a)=∫_0 ^(π/2) e^(aln(tanx)) dx ⇒  f^′ (a)=∫_0 ^(π/2) (tanx)^a log(tanx)dx  ⇒f^′ ((1/4))=∫_0 ^(π/2)  (tanx)^(1/4)  log(tanx)dx=I  changement tanx=t give f(a)=∫_0 ^∞   (t^a /(1+t^2 ))dt =_(t=(√z))  ∫_0 ^∞   (z^(a/2) /(1+z))(dz/(2(√z)))  =(1/2)∫_0 ^∞  (z^((a/2)−(1/2)) /(1+z))dz =(1/2)∫_0 ^∞   (z^(((a+1)/2)−1) /(1+z))dz =(π/(2sin(π(((a+1))/2)))))  =(π/(2cos(((πa)/2))))   cv of f(a)   we must have0 <((a+1)/2)<1 ⇒−1<a<1  f^′ (a) =−(π/2)×((−(π/2)sin(((πa)/2)))/(cos^2 (((πa)/2)))) =(π^2 /4).((sin(((πa)/2)))/(cos^2 (((πa)/2))))  I =f^′ ((1/4))=(π^2 /4).((sin((π/8)))/(cos^2 ((π/8)))) =(π^2 /4).(((√(2−(√2)))/2)/((2+(√2))/4)) =(π^2 /2)×((√(2−(√2)))/(2+(√2)))  J = ∫_0 ^(π/2) (tanx)^(−(1/3))  log(tanx)dx =f^′ (−(1/3))  =−(π^2 /4).((sin((π/6)))/(cos^2 ((π/6)))) =−(π^2 /4)×((1/2)/((((√3)/2))^2 )) =−(π^2 /8)×(4/3)  =−(π^2 /6)
letf(a)=0π2(tanx)adxf(a)=0π2ealn(tanx)dxf(a)=0π2(tanx)alog(tanx)dxf(14)=0π2(tanx)14log(tanx)dx=Ichangementtanx=tgivef(a)=0ta1+t2dt=t=z0za21+zdz2z=120za2121+zdz=120za+1211+zdz=π2sin(π(a+1)2))=π2cos(πa2)cvoff(a)wemusthave0<a+12<11<a<1f(a)=π2×π2sin(πa2)cos2(πa2)=π24.sin(πa2)cos2(πa2)I=f(14)=π24.sin(π8)cos2(π8)=π24.2222+24=π22×222+2J=0π2(tanx)13log(tanx)dx=f(13)=π24.sin(π6)cos2(π6)=π24×12(32)2=π28×43=π26

Leave a Reply

Your email address will not be published. Required fields are marked *