Menu Close

Calculate-I-a-b-0-1-t-a-1-t-b-dt-given-that-I-a-b-b-a-1-I-a-1-b-1-a-gt-0-b-gt-0-Use-the-fact-that-I-a-b-I-a-1-b-I-a-b-1-and-I-a-b-I-b-a-to-help-evaluate-I-a-b-




Question Number 1643 by 112358 last updated on 28/Aug/15
Calculate                 I(a,b)=∫_0 ^1 t^a (1−t)^b dt  given that I(a,b)=(b/(a+1))I(a+1,b−1)  (a>0,b>0). Use the fact that  I(a,b)=I(a+1,b)+I(a,b+1)  and I(a,b)=I(b,a)   to help evaluate I(a,b).
CalculateI(a,b)=01ta(1t)bdtgiventhatI(a,b)=ba+1I(a+1,b1)(a>0,b>0).UsethefactthatI(a,b)=I(a+1,b)+I(a,b+1)andI(a,b)=I(b,a)tohelpevaluateI(a,b).
Answered by 123456 last updated on 29/Aug/15
I(a,b)=∫_0 ^1 t^a (1−t)^b dt=∫_0 ^1 t^(a+1−1) (1−t)^(b+1−1) dt  I(a,b)=B(a+1,b+1)=((Γ(a+1)Γ(b+1))/(Γ(a+b+2)))=((a!b!)/((a+b+1)!))  −−−−−−−−−−−−−  I(a+1,b)+I(a,b+1)=((Γ(a+2)Γ(b+1))/(Γ(a+b+3)))+((Γ(a+1)Γ(b+2))/(Γ(a+b+3)))                                          =((Γ(a+2)Γ(b+1)+Γ(a+1)Γ(b+2))/(Γ(a+b+3)))                                          =((Γ(a+1+1)Γ(b+1)+Γ(a+1)Γ(b+1+1))/(Γ(a+b+2+1)))                                          =(((a+1)Γ(a+1)Γ(b+1)+(b+1)Γ(a+1)Γ(b+1))/((a+b+2)Γ(a+b+2)))                                          =(((a+b+2)Γ(a+1)Γ(b+1))/((a+b+2)Γ(a+b+2)))                                          =((Γ(a+1)Γ(b+1))/(Γ(a+b+2)))                                          =I(a,b)  (b/(a+1))I(a+1,b−1)=(b/(a+1))∙((Γ(a+2)Γ(b))/(Γ(a+b+2)))                                   =((Γ(a+1+1)bΓ(b))/((a+1)Γ(a+b+2)))                                   =(((a+1)Γ(a+1)Γ(b+1))/((a+1)Γ(a+b+2)))                                   =((Γ(a+1)Γ(b+1))/(Γ(a+b+2)))                                   =I(a,b)
I(a,b)=10ta(1t)bdt=10ta+11(1t)b+11dtI(a,b)=B(a+1,b+1)=Γ(a+1)Γ(b+1)Γ(a+b+2)=a!b!(a+b+1)!I(a+1,b)+I(a,b+1)=Γ(a+2)Γ(b+1)Γ(a+b+3)+Γ(a+1)Γ(b+2)Γ(a+b+3)=Γ(a+2)Γ(b+1)+Γ(a+1)Γ(b+2)Γ(a+b+3)=Γ(a+1+1)Γ(b+1)+Γ(a+1)Γ(b+1+1)Γ(a+b+2+1)=(a+1)Γ(a+1)Γ(b+1)+(b+1)Γ(a+1)Γ(b+1)(a+b+2)Γ(a+b+2)=(a+b+2)Γ(a+1)Γ(b+1)(a+b+2)Γ(a+b+2)=Γ(a+1)Γ(b+1)Γ(a+b+2)=I(a,b)ba+1I(a+1,b1)=ba+1Γ(a+2)Γ(b)Γ(a+b+2)=Γ(a+1+1)bΓ(b)(a+1)Γ(a+b+2)=(a+1)Γ(a+1)Γ(b+1)(a+1)Γ(a+b+2)=Γ(a+1)Γ(b+1)Γ(a+b+2)=I(a,b)
Commented by 123456 last updated on 29/Aug/15
B(x,y)=∫_0 ^1 t^(x−1) (1−t)^(y−1) dt  this is the beta function  Γ(x)=∫_0 ^(+∞) t^(x−1) e^(−t) dt  this is the gamma function  there a relation betwen these two function  B(x,y)=((Γ(x)Γ(y))/(Γ(x+y)))  Γ(x+1)=xΓ(x)  also there a relation betwen gamma function and factorial  Γ(x+1)=x!
B(x,y)=10tx1(1t)y1dtthisisthebetafunctionΓ(x)=+0tx1etdtthisisthegammafunctiontherearelationbetwenthesetwofunctionB(x,y)=Γ(x)Γ(y)Γ(x+y)Γ(x+1)=xΓ(x)alsotherearelationbetwengammafunctionandfactorialΓ(x+1)=x!
Commented by 112358 last updated on 29/Aug/15
That′s cool stuff. Thanks for the  information.
Thatscoolstuff.Thanksfortheinformation.

Leave a Reply

Your email address will not be published. Required fields are marked *