Menu Close

calculate-I-n-0-dx-x-n-3-2-with-n-gt-1-




Question Number 66468 by mathmax by abdo last updated on 15/Aug/19
calculate I_n = ∫_0 ^∞      (dx/((x^n  +3)^2 ))  with n>1
calculateIn=0dx(xn+3)2withn>1
Commented by mathmax by abdo last updated on 16/Aug/19
let f(a) =∫_0 ^∞    (dx/(a +x^n ))   with a>0 ⇒f(a) =(1/a)∫_0 ^∞   (dx/((1+(x^n /a))))  let use the changement  (x^n /a) =u^n  ⇒x^n  =a u^n  ⇒x=a^(1/n)  u ⇒  f(a) =(1/a)∫_0 ^∞    (1/(1+u^n ))a^(1/n)  du =a^((1/n)−1)  ∫_0 ^∞   (du/(1+u^n )) changement u=α^(1/n)   give ∫_0 ^∞   (1/(1+α))(1/n)α^((1/n)−1)  dα =(1/n) ∫_0 ^∞   (α^((1/n)−1) /(1+α))dα =(1/n) (π/(sin((π/n)))) ⇒  f(a) =a^((1/n)−1) ×(π/(nsin((π/n)))) =((π a^((1/n)−1) )/(nsin((π/n))))  and we have  f^′ (a) =−∫_0 ^∞   (dx/((a+x^n )^2 )) ⇒∫_0 ^∞     (dx/((a+x^n )^2 )) =−f^′ (a)  f^′ (a) =((π((1/n)−1)a^((1/n)−2) )/(nsin((π/n)))) ⇒∫_0 ^∞    (dx/((a+x^n )^2 )) =((π(1−(1/n))a^((1/n)−2) )/(nsin((π/n))))  a=3 ⇒ ∫_0 ^∞    (dx/((3+x^n )^2 )) =((π(1−(1/n))3^((1/n)−2) )/(nsin((π/n)))) =I_n
letf(a)=0dxa+xnwitha>0f(a)=1a0dx(1+xna)letusethechangementxna=unxn=aunx=a1nuf(a)=1a011+una1ndu=a1n10du1+unchangementu=α1ngive011+α1nα1n1dα=1n0α1n11+αdα=1nπsin(πn)f(a)=a1n1×πnsin(πn)=πa1n1nsin(πn)andwehavef(a)=0dx(a+xn)20dx(a+xn)2=f(a)f(a)=π(1n1)a1n2nsin(πn)0dx(a+xn)2=π(11n)a1n2nsin(πn)a=30dx(3+xn)2=π(11n)31n2nsin(πn)=In

Leave a Reply

Your email address will not be published. Required fields are marked *