Menu Close

calculate-interms-of-n-U-n-1-i-lt-j-n-sin-ipi-n-sin-jpi-n-




Question Number 72021 by mathmax by abdo last updated on 23/Oct/19
calculate interms of n  U_n =Σ_(1≤i<j≤n)  sin(((iπ)/n))sin(((jπ)/n))
calculateintermsofnUn=1i<jnsin(iπn)sin(jπn)
Commented by mathmax by abdo last updated on 26/Oct/19
we have (Σ_(i=1) ^n sin(x_i ))^2 =Σ_(i=1) ^n  sin^2 (x_i ) +2Σ_(1≤i<j≤n)  sin(  x_i )sin(x_j )  let x_i =((iπ)/n) ⇒(Σ_(i=1) ^n sin(((iπ)/n))^2 )=Σ_(i=1) ^n sin^2 (((iπ)/n))+2Σ_(1≤i<j≤n) sin(((iπ)/n))sin(((jπ)/n))  ⇒Σ_(1≤i<j≤j) sin(((iπ)/n))sin(((jπ)/n))  =(1/2){ (Σ_(i=1) ^n  sin(((iπ)/n)))^2 −Σ_(i=1) ^n  sin^2 (((iπ)/n))}  let A_n =Σ_(k=1) ^n sin(((kπ)/n)) ⇒A_n =Im(Σ_(k=0) ^n  e^((ikπ)/n) ) and  Σ_(i=0) ^n  e^((ikπ)/n)  =Σ_(i.0) ^n  (e^(i(π/n)) )^k  =((1−(e^(i(π/n)) )^(n+1) )/(1−e^((iπ)/n) )) =((1−e^(i(((n+1)π)/n)) )/(1−e^((iπ)/n) ))  =((1−cos((((n+1)π)/n))−isin((((n+1)π)/n)))/(1−cos((π/n))−isin((π/n))))  =((2sin^2 ((((n+1)π)/(2n)))−2isin((((n+1)π)/(2n)))cos((((n+1)π)/(2n))))/(2sin^2 ((π/(2n)))−2isin((π/(2n)))cos((π/(2n)))))   =((−isin((((n+1)π)/(2n)))e^(i(((n+1)π)/(2n))) )/(−isin((π/(2n)))e^((iπ)/(2n)) )) =((sin((((n+1)π)/(2n))))/(sin((π/(2n)))))(i) ⇒  A_n =((sin((((n+1)π)/(2n))))/(sin((π/(2n)))))  let  calculate Σ_(k=1) ^n  sin^2 (((kπ)/n))...be continued...
wehave(i=1nsin(xi))2=i=1nsin2(xi)+21i<jnsin(xi)sin(xj)letxi=iπn(i=1nsin(iπn)2)=i=1nsin2(iπn)+21i<jnsin(iπn)sin(jπn)1i<jjsin(iπn)sin(jπn)=12{(i=1nsin(iπn))2i=1nsin2(iπn)}letAn=k=1nsin(kπn)An=Im(k=0neikπn)andi=0neikπn=i.0n(eiπn)k=1(eiπn)n+11eiπn=1ei(n+1)πn1eiπn=1cos((n+1)πn)isin((n+1)πn)1cos(πn)isin(πn)=2sin2((n+1)π2n)2isin((n+1)π2n)cos((n+1)π2n)2sin2(π2n)2isin(π2n)cos(π2n)=isin((n+1)π2n)ei(n+1)π2nisin(π2n)eiπ2n=sin((n+1)π2n)sin(π2n)(i)An=sin((n+1)π2n)sin(π2n)letcalculatek=1nsin2(kπn)becontinued
Commented by mathmax by abdo last updated on 26/Oct/19
we have Σ_(k=1) ^n  sin^2 (((kπ)/n))=Σ_(k=1) ^n ((1−cos(((2kπ)/n)))/2)  =(n/2)−(1/2)Σ_(k=1) ^n  cos(((2kπ)/n)) and  Σ_(k=1) ^n  cos(((2kπ)/n))=Re(Σ_(k=0) ^n  e^((i2kπ)/n) −1)  Σ_(k=0) ^n  e^((i2kπ)/n)  =((1−(e^((i2π)/n) )^(n+1) )/(1−e^((i2π)/n) )) =((1−e^((i(2π)(n+1))/n) )/(1−e^((i2π)/n) ))  =((1−cos(((2(n+1)π)/n))−isin(((2(n+1)π)/n)))/(1−cos(((2π)/n))−isin(((2π)/n))))  =((2sin^2 ((((n+1)π)/n))−2isin((((n+1)π)/n))cos((((n+1)π)/n)))/(2sin^2 ((π/n))−2isin((π/n))cos((π/n))))  =((−isin((((n+1)π)/n))e^(i(((n+1)π)/n)) )/(−isin((π/n))e^((iπ)/n) )) =((sin((((n+1)π)/n)))/(sin((π/n))))×(−1) ⇒  Σ_(k=1) ^n  cos(((2kπ)/n))=−1−((sin((((n+1)π)/n)))/(sin((π/n)))) =−1−((sin(π+(π/n)))/(sin((π/n))))  =−1+1 =0 ⇒Σ_(k=1) ^n  sin^2 (((kπ)/n))=(n/2) ⇒  Σ_(1≤i<j≤n)    sin(((iπ)/n))sin(((jπ)/n))  =(1/2){  ((sin^2 ((((n+1)π)/(2n))))/(sin^2 ((π/(2n))))) −(n^2 /4)}
wehavek=1nsin2(kπn)=k=1n1cos(2kπn)2=n212k=1ncos(2kπn)andk=1ncos(2kπn)=Re(k=0nei2kπn1)k=0nei2kπn=1(ei2πn)n+11ei2πn=1ei(2π)(n+1)n1ei2πn=1cos(2(n+1)πn)isin(2(n+1)πn)1cos(2πn)isin(2πn)=2sin2((n+1)πn)2isin((n+1)πn)cos((n+1)πn)2sin2(πn)2isin(πn)cos(πn)=isin((n+1)πn)ei(n+1)πnisin(πn)eiπn=sin((n+1)πn)sin(πn)×(1)k=1ncos(2kπn)=1sin((n+1)πn)sin(πn)=1sin(π+πn)sin(πn)=1+1=0k=1nsin2(kπn)=n21i<jnsin(iπn)sin(jπn)=12{sin2((n+1)π2n)sin2(π2n)n24}

Leave a Reply

Your email address will not be published. Required fields are marked *