calculate-interms-of-n-U-n-1-i-lt-j-n-sin-ipi-n-sin-jpi-n- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 72021 by mathmax by abdo last updated on 23/Oct/19 calculateintermsofnUn=∑1⩽i<j⩽nsin(iπn)sin(jπn) Commented by mathmax by abdo last updated on 26/Oct/19 wehave(∑i=1nsin(xi))2=∑i=1nsin2(xi)+2∑1⩽i<j⩽nsin(xi)sin(xj)letxi=iπn⇒(∑i=1nsin(iπn)2)=∑i=1nsin2(iπn)+2∑1⩽i<j⩽nsin(iπn)sin(jπn)⇒∑1⩽i<j⩽jsin(iπn)sin(jπn)=12{(∑i=1nsin(iπn))2−∑i=1nsin2(iπn)}letAn=∑k=1nsin(kπn)⇒An=Im(∑k=0neikπn)and∑i=0neikπn=∑i.0n(eiπn)k=1−(eiπn)n+11−eiπn=1−ei(n+1)πn1−eiπn=1−cos((n+1)πn)−isin((n+1)πn)1−cos(πn)−isin(πn)=2sin2((n+1)π2n)−2isin((n+1)π2n)cos((n+1)π2n)2sin2(π2n)−2isin(π2n)cos(π2n)=−isin((n+1)π2n)ei(n+1)π2n−isin(π2n)eiπ2n=sin((n+1)π2n)sin(π2n)(i)⇒An=sin((n+1)π2n)sin(π2n)letcalculate∑k=1nsin2(kπn)…becontinued… Commented by mathmax by abdo last updated on 26/Oct/19 wehave∑k=1nsin2(kπn)=∑k=1n1−cos(2kπn)2=n2−12∑k=1ncos(2kπn)and∑k=1ncos(2kπn)=Re(∑k=0nei2kπn−1)∑k=0nei2kπn=1−(ei2πn)n+11−ei2πn=1−ei(2π)(n+1)n1−ei2πn=1−cos(2(n+1)πn)−isin(2(n+1)πn)1−cos(2πn)−isin(2πn)=2sin2((n+1)πn)−2isin((n+1)πn)cos((n+1)πn)2sin2(πn)−2isin(πn)cos(πn)=−isin((n+1)πn)ei(n+1)πn−isin(πn)eiπn=sin((n+1)πn)sin(πn)×(−1)⇒∑k=1ncos(2kπn)=−1−sin((n+1)πn)sin(πn)=−1−sin(π+πn)sin(πn)=−1+1=0⇒∑k=1nsin2(kπn)=n2⇒∑1⩽i<j⩽nsin(iπn)sin(jπn)=12{sin2((n+1)π2n)sin2(π2n)−n24} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-1-n-n-3-n-1-2-Next Next post: What-is-the-volume-of-tetrahedron-ABCD-whose-vertices-have-the-coordinates-A-2-3-6-B-3-2-2-C-3-4-7-and-D-5-1-8-Find-the-lateral-surface-area-of-the-tetrahedron-and-find-the-volume Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.