Menu Close

calculate-k-0-n-1-k-k-with-root-of-x-2-2x-5-0-




Question Number 76514 by mathmax by abdo last updated on 28/Dec/19
calculate Π_(k=0) ^(n−1) (α^(k )  +α^−^k  ) with α root of x^2 +2x+5 =0
calculatek=0n1(αk+αk)withαrootofx2+2x+5=0
Commented by mathmax by abdo last updated on 28/Dec/19
let A_n =Π_(k=0) ^(n−1) (α^k  +α^−^k  )  let solve x^2  +2x+5=0  Δ^′ =1−5 =−4 =(2i)^2 /⇒ α =−1+2i  and  α^− =−1−2i  α =(√5)e^(−i arctan(2))   and α^− =(√5)e^(i arctan(2))  ⇒  α^k  +α^−^k   =((√5))^k  e^(−ik arctan(2))  +((√5))^k  e^(ik arctan(2))   =((√5))^k  (2cos(k arctan2) ⇒ A_n =Π_(k=0) ^(n−1) 2((√5))^k  cos(k arctan(2))  =2^n  Π_(k=0) ^(n−1) ((√5))^k  Π_(k=0) ^(n−1)  cos(k arctan(2))  =2^n  ((√5))^(Σ_(k=0) ^(n−1) k)  Π_(k=0) ^(n−1)  cos(k arctan(2))  =2^n  ((√5))^(((n−1)n)/2)  Π_(k=0) ^(n−1)  cos(k arctan(2))
letAn=k=0n1(αk+αk)letsolvex2+2x+5=0Δ=15=4=(2i)2/α=1+2iandα=12iα=5eiarctan(2)andα=5eiarctan(2)αk+αk=(5)keikarctan(2)+(5)keikarctan(2)=(5)k(2cos(karctan2)An=k=0n12(5)kcos(karctan(2))=2nk=0n1(5)kk=0n1cos(karctan(2))=2n(5)k=0n1kk=0n1cos(karctan(2))=2n(5)(n1)n2k=0n1cos(karctan(2))
Answered by john santu last updated on 28/Dec/19
(x+1)^2 +4=0→α=2i−1  α+α^(−1) =2i−1+(1/(2i−1))=2i−1+((−2i−1)/((2i−1)(−2i−1)))  =((10i−5−2i−1)/5)=((8i−6)/5)  α^2 +α^(−2) =(((8i−6)/5))^2 −2
(x+1)2+4=0α=2i1α+α1=2i1+12i1=2i1+2i1(2i1)(2i1)=10i52i15=8i65α2+α2=(8i65)22

Leave a Reply

Your email address will not be published. Required fields are marked *