Menu Close

Calculate-lim-a-gt-0-dx-1-x-a-




Question Number 65878 by ~ À ® @ 237 ~ last updated on 05/Aug/19
  Calculate   lim_(a−>∞)   ∫_0 ^∞   (dx/(1+x^a ))
Calculatelima>0dx1+xa
Commented by mathmax by abdo last updated on 05/Aug/19
changement x^a =t give x =t^(1/a)  ⇒∫_0 ^∞   (dx/(1+x^a )) =∫_0 ^∞   (1/(1+t))(1/a)t^((1/a)−1) dt  =(1/a)∫_0 ^∞   (t^((1/a)−1) /(1+t))dt   so for a>1 we get 0<(1/a)<1 ⇒  ∫_0 ^∞  (dx/(1+x^a )) =(1/a) (π/(sin((π/a)))) ⇒lim_(a→+∞)  ∫_0 ^∞   (dx/(1+x^a )) =lim_(a→+∞)   ((π/a)/(sin((π/a))))  =lim_(t→0)  (t/(sint)) =1  (  put t=(π/a)) finally  lim_(a→+∞)    ∫_0 ^∞    (dt/(1+x^a )) =1
changementxa=tgivex=t1a0dx1+xa=011+t1at1a1dt=1a0t1a11+tdtsofora>1weget0<1a<10dx1+xa=1aπsin(πa)lima+0dx1+xa=lima+πasin(πa)=limt0tsint=1(putt=πa)finallylima+0dt1+xa=1
Commented by ~ À ® @ 237 ~ last updated on 05/Aug/19
thank you sir !  but  at the second line , it′s not clear
thankyousir!butatthesecondline,itsnotclear
Commented by mathmax by abdo last updated on 05/Aug/19
x =t^(1/a)  ⇒dx =(1/a)t^((1/a)−1)  dt....
x=t1adx=1at1a1dt.
Commented by ~ À ® @ 237 ~ last updated on 05/Aug/19
  let f(a)=∫_0 ^∞  (dx/(1+x^a ))      .   As  (1/(1+x^a ))<(1/x^a ) ⇒ f(a) is real  change u=(1/(1+x^a ))  then  x=((1/u)−1)^(1/a)   and   dx = (1/a).((−1)/u^2 ).((1/u)−1)^((1/a) −1) du  Then    f(a)=(1/a)∫_0 ^1  u. (1/u^2 ).(((1−u)/u))^((1/a)−1) du       = (1/a) ∫_0 ^1  u^((−1)/a) (1−u)^((1/a)−1)  du      =(1/a) ∫_0 ^1  u^(1−(1/a) −1) (1−u)^((1/a)−1) du= (1/a) B(1−(1/a) ,(1/a))=(1/a).((Γ(1−(1/a))Γ((1/a)))/(Γ(1)))  As  ∀ z  Γ(1−z)Γ(z)=(π/(sin(πz)))   we finally get  f(a)= ((π/a)/(sin((π/a))))   then  easily lim_(a−>∞) f(a)=1 (by changing  b=(π/a))
letf(a)=0dx1+xa.As11+xa<1xaf(a)isrealchangeu=11+xathenx=(1u1)1aanddx=1a.1u2.(1u1)1a1duThenf(a)=1a01u.1u2.(1uu)1a1du=1a01u1a(1u)1a1du=1a01u11a1(1u)1a1du=1aB(11a,1a)=1a.Γ(11a)Γ(1a)Γ(1)AszΓ(1z)Γ(z)=πsin(πz)wefinallygetf(a)=πasin(πa)theneasilylima>f(a)=1(bychangingb=πa)
Commented by ~ À ® @ 237 ~ last updated on 05/Aug/19
As  (1/(1+x^a ))<(1/(x^a  ))  ⇒  f(a) is real when a>1
As11+xa<1xaf(a)isrealwhena>1