Menu Close

calculate-lim-n-n-2-n-




Question Number 8066 by Chantria last updated on 29/Sep/16
calculate    lim_(n→∞) (n/2^(√n) )
calculatelimnn2n
Answered by prakash jain last updated on 02/Oct/16
2^(√n) =e^((√n)ln 2) =1+(√n)ln 2+((((√n)ln 2)^2 )/(2!))+((((√n)ln 2)^3 )/(3!))+..  (n/2^(√n) )=(n/(1+(√n)ln 2+((((√n)ln 2)^2 )/(2!))+((((√n)ln 2)^3 )/(3!))+..))  =((n/n)/(1+((ln (√2))/n)+((ln 2)/(2!))+(((√n)ln 2)/(3!))+(higher power of n)))  =(1/(1+((ln (√2))/n)+((ln 2)/(2!))+(((√n)ln 2)/(3!))+(higher power of n)))  lim_(n→∞) (n/2^(√n) )=(1/(1+0+((ln 2)/(2!))+∞))=0
2n=enln2=1+nln2+(nln2)22!+(nln2)33!+..n2n=n1+nln2+(nln2)22!+(nln2)33!+..=nn1+ln2n+ln22!+nln23!+(higherpowerofn)=11+ln2n+ln22!+nln23!+(higherpowerofn)limnn2n=11+0+ln22!+=0

Leave a Reply

Your email address will not be published. Required fields are marked *