Menu Close

calculate-lim-x-0-arctan-1-x-3-pi-4-xsin-x-2-




Question Number 66696 by mathmax by abdo last updated on 18/Aug/19
calculate lim_(x→0)      ((arctan(1+x^3 )−(π/4))/(xsin(x^2 )))
calculatelimx0arctan(1+x3)π4xsin(x2)
Commented by kaivan.ahmadi last updated on 18/Aug/19
lim_(x→0)  ((3x^2 /(1+(1+x^3 )^2 ))/(3x^2 ))=lim_(x→0) (1/1+(1+x^3 )^2 )=1/2
limx03x2/(1+(1+x3)2)3x2=limx0(1/1+(1+x3)2)=1/2
Commented by ~ À ® @ 237 ~ last updated on 18/Aug/19
let named it L  L=lim_(x→0)  ((arctan(1+x^3 ) −(π/4))/x^3 ) . (x^2 /(sin(x^2 )))   Now  lim_(x→0)  (x^2 /(sin(x^2 ))) = lim_(u→0)  (1/((sinu)/u)) = 1        ( u=x^2 )  lim_(x→0)  ((arctan(1+x^3 )−(π/4))/x^3 ) = lim_(v→0)  ((arctan(1+v)−(π/4))/v) =lim_(v→0)  (1/(1+(1+v)^2 )) = (1/2)      (v=x^3 )  So    L=(1/2)
letnameditLL=limx0arctan(1+x3)π4x3.x2sin(x2)Nowlimx0x2sin(x2)=limu01sinuu=1(u=x2)limx0arctan(1+x3)π4x3=limv0arctan(1+v)π4v=limv011+(1+v)2=12(v=x3)SoL=12
Commented by mathmax by abdo last updated on 19/Aug/19
let f(u) =arctan(1+u)  we have   f(u)=f(0)+u f^′ (0)+o(u^2 )  but f(0) =(π/4)  f^′ (u) =(1/(1+(1+u)^2 )) ⇒f^′ (0) =(1/2) ⇒f(u) =(π/4) +(1/2)u +o(u^2 ) ⇒  arctan(1+x^3 ) =(π/4) +(x^3 /2) +o(x^6 ) ⇒arctan(1+x^3 )−(π/4)∼(x^3 /2)  (x→0)  slso xsin(x^2 ) ∼ x^3  ⇒ lim_(x→0)   ((arctan(1+x^3 )−(π/4))/(xsin(x^2 ))) =lim_(x→0)  (x^3 /(2x^3 ))  =(1/2) .
letf(u)=arctan(1+u)wehavef(u)=f(0)+uf(0)+o(u2)butf(0)=π4f(u)=11+(1+u)2f(0)=12f(u)=π4+12u+o(u2)arctan(1+x3)=π4+x32+o(x6)arctan(1+x3)π4x32(x0)slsoxsin(x2)x3limx0arctan(1+x3)π4xsin(x2)=limx0x32x3=12.
Answered by Cmr 237 last updated on 18/Aug/19
Answered by Cmr 237 last updated on 18/Aug/19
with the limited develpment we   have:  arctan(1+x^3 )=(π/4)+(x^3 /2) +o(x^3 )  sin(x^2 )=x^2 +o(x^2 )  so  lim _(x→0) ((arctan(1+x^3 )−(π/4))/(xsin(x^2 )))=lim_  _(x→0) (((π/4)+(x^3 /2)−(π/4))/(x×x^2 ))                     =(1/2).
withthelimiteddevelpmentwehave:arctan(1+x3)=π4+x32+o(x3)sin(x2)=x2+o(x2)solimx0arctan(1+x3)π4xsin(x2)=limx0π4+x32π4x×x2=12.

Leave a Reply

Your email address will not be published. Required fields are marked *