Menu Close

calculate-lim-x-0-arctan-e-x-pi-4-x-2-




Question Number 72990 by mathmax by abdo last updated on 05/Nov/19
calculate lim_(x→0)      ((arctan(e^x )−(π/4))/x^2 )
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{{arctan}\left({e}^{{x}} \right)−\frac{\pi}{\mathrm{4}}}{{x}^{\mathrm{2}} } \\ $$
Commented by abdomathmax last updated on 19/Nov/19
let use hospital theorem  f(x)=arctan(e^x )−(π/4) and  g(x)=x^2   we have f^′ (x)=(e^x /(1+e^(2x) ))  f^((2)) (x)=((e^x (1+e^(2x) )−2e^(2x) e^x )/((1+e^(2x) )^2 )) =((e^x  +e^(3x) −2e^(3x) )/((1+e^(2x) )^2 ))  = ((e^x −e^(3x) )/((1+e^(2x) )^2 )) ⇒lim_(x→0)   f^((2)) (x)=0  g^′ (x)=2x and g^((2)) (x)=2 ⇒lim_(x→0)   g^((2)) (x)=2 ⇒  lim_(x→0)     ((arctan(e^x )−(π/4))/x^2 )=0
$${let}\:{use}\:{hospital}\:{theorem}\:\:{f}\left({x}\right)={arctan}\left({e}^{{x}} \right)−\frac{\pi}{\mathrm{4}}\:{and} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} \:\:{we}\:{have}\:{f}^{'} \left({x}\right)=\frac{{e}^{{x}} }{\mathrm{1}+{e}^{\mathrm{2}{x}} } \\ $$$${f}^{\left(\mathrm{2}\right)} \left({x}\right)=\frac{{e}^{{x}} \left(\mathrm{1}+{e}^{\mathrm{2}{x}} \right)−\mathrm{2}{e}^{\mathrm{2}{x}} {e}^{{x}} }{\left(\mathrm{1}+{e}^{\mathrm{2}{x}} \right)^{\mathrm{2}} }\:=\frac{{e}^{{x}} \:+{e}^{\mathrm{3}{x}} −\mathrm{2}{e}^{\mathrm{3}{x}} }{\left(\mathrm{1}+{e}^{\mathrm{2}{x}} \right)^{\mathrm{2}} } \\ $$$$=\:\frac{{e}^{{x}} −{e}^{\mathrm{3}{x}} }{\left(\mathrm{1}+{e}^{\mathrm{2}{x}} \right)^{\mathrm{2}} }\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:\:{f}^{\left(\mathrm{2}\right)} \left({x}\right)=\mathrm{0} \\ $$$${g}^{'} \left({x}\right)=\mathrm{2}{x}\:{and}\:{g}^{\left(\mathrm{2}\right)} \left({x}\right)=\mathrm{2}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:\:{g}^{\left(\mathrm{2}\right)} \left({x}\right)=\mathrm{2}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{arctan}\left({e}^{{x}} \right)−\frac{\pi}{\mathrm{4}}}{{x}^{\mathrm{2}} }=\mathrm{0} \\ $$
Answered by mind is power last updated on 05/Nov/19
=lim x→0  ((e^x /(1+e^(2x) ))/(2x))= { ((+∞   x→0^+ )),((−∞  x→0^− )) :}
$$=\mathrm{lim}\:\mathrm{x}\rightarrow\mathrm{0}\:\:\frac{\frac{\mathrm{e}^{\mathrm{x}} }{\mathrm{1}+\mathrm{e}^{\mathrm{2x}} }}{\mathrm{2x}}=\begin{cases}{+\infty\:\:\:\mathrm{x}\rightarrow\mathrm{0}^{+} }\\{−\infty\:\:\mathrm{x}\rightarrow\mathrm{0}^{−} }\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *