Menu Close

calculate-n-0-1-n-2-




Question Number 140978 by Mathspace last updated on 14/May/21
calculate Σ_(n=0) ^∞  (1/((n!)^2 ))
$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left({n}!\right)^{\mathrm{2}} } \\ $$
Answered by Dwaipayan Shikari last updated on 14/May/21
Σ_(n=0) ^∞ (1/(n!n!))=Σ_(n=0) ^∞ (((1)_n ^2 )/((1)_n ^3 n!))(1)^n = _2 F_3 (1,1;1;1;1;1)
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!{n}!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{1}\right)_{{n}} ^{\mathrm{2}} }{\left(\mathrm{1}\right)_{{n}} ^{\mathrm{3}} {n}!}\left(\mathrm{1}\right)^{{n}} =\:_{\mathrm{2}} {F}_{\mathrm{3}} \left(\mathrm{1},\mathrm{1};\mathrm{1};\mathrm{1};\mathrm{1};\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *