Menu Close

calculate-n-0-n-1-n-2n-1-2-n-3-




Question Number 136404 by mathmax by abdo last updated on 21/Mar/21
calculate Σ_(n=0) ^∞    ((n(−1)^n )/((2n+1)^2 (n+3)))
calculaten=0n(1)n(2n+1)2(n+3)
Answered by mindispower last updated on 21/Mar/21
−(1/2){Σ_(n≥0) (((−1)^n )/((2n+1)(n+3)))−Σ_(n≥0) (((−1)^n )/((2n+1)^2 ))}=−(1/2)A  A=Σ(2/5).(((−1)^n )/(2n+1))−(1/5)Σ_(n≥0) (((−1)^n )/(n+3))  =(2/5)Σ_(n≥0) (((−1)^n )/(2n+1))−(1/5)Σ(((−1)^(n+3) )/(n+3))  =(2/5)tan^(−1) (1)−(1/5)Σ_(n≥2) (((−1)^n )/(n+1))−G  =(π/(10))−(1/5)(ln(2)−(1/2))−G  we get −(π/(20))+((ln(2))/(10))−(1/(20))+(G/2),G catalan constante
12{n0(1)n(2n+1)(n+3)n0(1)n(2n+1)2}=12AA=Σ25.(1)n2n+115n0(1)nn+3=25n0(1)n2n+115Σ(1)n+3n+3=25tan1(1)15n2(1)nn+1G=π1015(ln(2)12)Gwegetπ20+ln(2)10120+G2,Gcatalanconstante

Leave a Reply

Your email address will not be published. Required fields are marked *