Menu Close

calculate-n-0-n-1-n-2n-1-2-n-3-




Question Number 136404 by mathmax by abdo last updated on 21/Mar/21
calculate Σ_(n=0) ^∞    ((n(−1)^n )/((2n+1)^2 (n+3)))
$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{n}\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{n}+\mathrm{3}\right)} \\ $$
Answered by mindispower last updated on 21/Mar/21
−(1/2){Σ_(n≥0) (((−1)^n )/((2n+1)(n+3)))−Σ_(n≥0) (((−1)^n )/((2n+1)^2 ))}=−(1/2)A  A=Σ(2/5).(((−1)^n )/(2n+1))−(1/5)Σ_(n≥0) (((−1)^n )/(n+3))  =(2/5)Σ_(n≥0) (((−1)^n )/(2n+1))−(1/5)Σ(((−1)^(n+3) )/(n+3))  =(2/5)tan^(−1) (1)−(1/5)Σ_(n≥2) (((−1)^n )/(n+1))−G  =(π/(10))−(1/5)(ln(2)−(1/2))−G  we get −(π/(20))+((ln(2))/(10))−(1/(20))+(G/2),G catalan constante
$$−\frac{\mathrm{1}}{\mathrm{2}}\left\{\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{3}\right)}−\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right\}=−\frac{\mathrm{1}}{\mathrm{2}}{A} \\ $$$${A}=\Sigma\frac{\mathrm{2}}{\mathrm{5}}.\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{5}}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{3}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{5}}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{5}}\Sigma\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{3}} }{{n}+\mathrm{3}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{5}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{5}}\underset{{n}\geqslant\mathrm{2}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}−{G} \\ $$$$=\frac{\pi}{\mathrm{10}}−\frac{\mathrm{1}}{\mathrm{5}}\left({ln}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}\right)−{G} \\ $$$${we}\:{get}\:−\frac{\pi}{\mathrm{20}}+\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{10}}−\frac{\mathrm{1}}{\mathrm{20}}+\frac{{G}}{\mathrm{2}},{G}\:{catalan}\:{constante} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *