Menu Close

calculate-n-1-1-n-n-2-n-1-3-




Question Number 69376 by mathmax by abdo last updated on 22/Sep/19
calculate Σ_(n=1) ^∞  (((−1)^n )/(n^2 (n+1)^3 ))
calculaten=1(1)nn2(n+1)3
Commented by mathmax by abdo last updated on 24/Sep/19
let S_n =Σ_(k=1) ^n  (((−1)^k )/(k^2 (k+1)^3 ))  first let decompose F(x)=(1/(x^2 (x+1)^3 ))  F(x)=(a/x) +(b/x^2 ) +(c/(x+1)) +(d/((x+1)^2 )) +(e/((x+1)^3 ))  b=lim_(x→0)   x^2 F(x)=1  e=lim_(x→−1) (x+1)^3 F(x)=1 ⇒F(x)=(a/x)+(1/x^2 ) +(c/(x+1)) +(d/((x+1)^2 )) +(1/((x+1)^3 ))  lim_(x→+∞) xF(x)=0 =a+c ⇒c=−a ⇒  F(x)=(a/x)−(a/(x+1)) +(1/x^2 ) +(d/((x+1)^2 )) +(1/((x+1)^3 ))  =(a/(x^2 +x)) +(1/x^2 ) +(d/((x+1)^2 )) +(1/((x+1)^3 )) ⇒lim_(x→+∞) x^2 F(x)  =a+1 +d=0 ⇒d =−a−1 ⇒  F(x)=(a/x)−(a/(x+1)) +(1/x^2 )−((a+1)/((x+1)^2 )) +(1/((x+1)^3 ))  F(−2) =−(1/4) =−(a/2) +a +(1/4)−a−1−1 =−(a/2)−(7/4) ⇒  (1/4) =(a/2)+(7/4) ⇒1 =2a+7 ⇒2a=−6 ⇒a=−3 ⇒  F(x)=−(3/x) +(3/(x+1)) +(1/x^2 ) +(2/((x+1)^2 )) +(1/((x+1)^3 )) ⇒  S_n =Σ_(k=1) ^n (−1)^k  F(k)=−3Σ_(k=1) ^n (((−1)^k )/k) +3Σ_(k=1) ^n  (((−1)^k )/(k+1))  +Σ_(k=1) ^n  (((−1)^k )/k^2 ) +2Σ_(k=1) ^n  (((−1)^k )/((k+1)^2 )) +Σ_(k=1) ^n  (((−1)^k )/((k+1)^3 ))  Σ_(k=1) ^n  (((−1)^k )/k) →−ln(2)  Σ_(k=1) ^n  (((−1)^k )/(k+1)) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k) →ln(2)−1  Σ_(k=1) ^n  (((−1)^k )/k^2 ) →Σ_(k=1) ^∞  (((−1)^k )/k^2 ) =(2^(1−2) −1)ξ(2)=−(1/2)(π^2 /6) =−(π^2 /(12))  Σ_(k=1) ^n (((−1)^k )/((k+1)^2 )) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k^2 ) =−Σ_(k=1) ^(n+1)  (((−1)^k )/k^2 )−1→(π^2 /(12))−1  Σ_(k=1) ^n  (((−1)^k )/((k+1)^3 )) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k^3 ) =−Σ_(k=1) ^(n+1)  (((−1)^k )/k^3 ) −1  →−(2^(1−3) −1)ξ(3)−1 =(1−(1/4))ξ(3)−1 =(3/4)ξ(3)−1 ⇒  S =lim_(n→+∞)  S_n   =3ln(2)+3ln(2)−3−(π^2 /(12)) +(π^2 /6)−2 +(3/4)ξ(3)−1  S=6ln(2) +(π^2 /(12)) +(3/4)ξ(3) −6
letSn=k=1n(1)kk2(k+1)3firstletdecomposeF(x)=1x2(x+1)3F(x)=ax+bx2+cx+1+d(x+1)2+e(x+1)3b=limx0x2F(x)=1e=limx1(x+1)3F(x)=1F(x)=ax+1x2+cx+1+d(x+1)2+1(x+1)3limx+xF(x)=0=a+cc=aF(x)=axax+1+1x2+d(x+1)2+1(x+1)3=ax2+x+1x2+d(x+1)2+1(x+1)3limx+x2F(x)=a+1+d=0d=a1F(x)=axax+1+1x2a+1(x+1)2+1(x+1)3F(2)=14=a2+a+14a11=a27414=a2+741=2a+72a=6a=3F(x)=3x+3x+1+1x2+2(x+1)2+1(x+1)3Sn=k=1n(1)kF(k)=3k=1n(1)kk+3k=1n(1)kk+1+k=1n(1)kk2+2k=1n(1)k(k+1)2+k=1n(1)k(k+1)3k=1n(1)kkln(2)k=1n(1)kk+1=k=2n+1(1)k1kln(2)1k=1n(1)kk2k=1(1)kk2=(2121)ξ(2)=12π26=π212k=1n(1)k(k+1)2=k=2n+1(1)k1k2=k=1n+1(1)kk21π2121k=1n(1)k(k+1)3=k=2n+1(1)k1k3=k=1n+1(1)kk31(2131)ξ(3)1=(114)ξ(3)1=34ξ(3)1S=limn+Sn=3ln(2)+3ln(2)3π212+π262+34ξ(3)1S=6ln(2)+π212+34ξ(3)6

Leave a Reply

Your email address will not be published. Required fields are marked *