calculate-n-1-1-n-n-2-n-1-3- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 69376 by mathmax by abdo last updated on 22/Sep/19 calculate∑n=1∞(−1)nn2(n+1)3 Commented by mathmax by abdo last updated on 24/Sep/19 letSn=∑k=1n(−1)kk2(k+1)3firstletdecomposeF(x)=1x2(x+1)3F(x)=ax+bx2+cx+1+d(x+1)2+e(x+1)3b=limx→0x2F(x)=1e=limx→−1(x+1)3F(x)=1⇒F(x)=ax+1x2+cx+1+d(x+1)2+1(x+1)3limx→+∞xF(x)=0=a+c⇒c=−a⇒F(x)=ax−ax+1+1x2+d(x+1)2+1(x+1)3=ax2+x+1x2+d(x+1)2+1(x+1)3⇒limx→+∞x2F(x)=a+1+d=0⇒d=−a−1⇒F(x)=ax−ax+1+1x2−a+1(x+1)2+1(x+1)3F(−2)=−14=−a2+a+14−a−1−1=−a2−74⇒14=a2+74⇒1=2a+7⇒2a=−6⇒a=−3⇒F(x)=−3x+3x+1+1x2+2(x+1)2+1(x+1)3⇒Sn=∑k=1n(−1)kF(k)=−3∑k=1n(−1)kk+3∑k=1n(−1)kk+1+∑k=1n(−1)kk2+2∑k=1n(−1)k(k+1)2+∑k=1n(−1)k(k+1)3∑k=1n(−1)kk→−ln(2)∑k=1n(−1)kk+1=∑k=2n+1(−1)k−1k→ln(2)−1∑k=1n(−1)kk2→∑k=1∞(−1)kk2=(21−2−1)ξ(2)=−12π26=−π212∑k=1n(−1)k(k+1)2=∑k=2n+1(−1)k−1k2=−∑k=1n+1(−1)kk2−1→π212−1∑k=1n(−1)k(k+1)3=∑k=2n+1(−1)k−1k3=−∑k=1n+1(−1)kk3−1→−(21−3−1)ξ(3)−1=(1−14)ξ(3)−1=34ξ(3)−1⇒S=limn→+∞Sn=3ln(2)+3ln(2)−3−π212+π26−2+34ξ(3)−1S=6ln(2)+π212+34ξ(3)−6 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-semicircle-contains-a-square-of-possible-largest-area-If-s-is-the-measure-of-the-side-of-the-square-what-is-the-radius-of-the-semicircle-Next Next post: Question-134915 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.