Menu Close

calculate-n-1-1-n-n-2-n-1-3-




Question Number 70595 by mathmax by abdo last updated on 06/Oct/19
calculate Σ_(n=1) ^∞  (((−1)^n )/(n^2 (n+1)^3 ))
calculaten=1(1)nn2(n+1)3
Commented by mathmax by abdo last updated on 08/Oct/19
let S =Σ_(n=1) ^∞  (((−1)^n )/(n^2 (n+1)^3 )) let decompose F(x)=(1/(x^2 (x+1)^3 ))  F(x)=(a/x)+(b/x^2 ) +(c/(x+1)) +(d/((x+1)^2 )) +(e/((x+1)^3 ))  b=1  and e=1 ⇒F(x)=(a/x) +(1/x^2 ) +(c/(x+1)) +(d/((x+1)^2 )) +(1/((x+1)^3 ))  lim_(x→+∞)    xF(x)=0=a+c ⇒c=−a ⇒  F(x)=(a/x)+(1/x^2 )−(a/(x+1)) +(d/((x+1)^2 )) +(1/((x+1)^3 ))  F(1)=(1/8) =a+1−(a/2) +(d/4) +(1/8) ⇒(a/2) +(d/4)=−1 ⇒2a+d=−4  F(−2)=−(1/4) =−(a/2) +(1/4) +a +d −1 ⇒  −1=−2a+1 +4a+4d−4 ⇒−1=2a+4d−3 ⇒2a+4d=2 ⇒  a+2d=1 ⇒a=1−2d ⇒2(1−2d)+d=−4 ⇒2−3d=−4 ⇒  −3d=−6 ⇒d=2 ⇒a=1−4=−3 ⇒  F(x)=−(3/x) +(1/x^2 ) +(3/(x+1)) +(2/((x+1)^2 )) +(1/((x+1)^3 )) ⇒  S=Σ_(n=1) ^∞  (−1)^n F(n)=−3Σ_(n=1) ^∞  (((−1)^n )/n) +Σ_(n=1) ^∞  (((−1)^n )/n^2 )  +3 Σ_(n=1) ^∞  (((−1)^n )/(n+1)) +Σ_(n=1) ^∞  (((−1)^n )/((n+1)^3 ))  Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(2^(1−2) −1)ξ(2)=−(1/2)(π^2 /6) =−(π^2 /(12))  Σ_(n=1) ^∞  (((−1)^n )/(n+1)) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)−1=ln(2)−1  Σ_(n=1) ^∞   (((−1)^n )/((n+1)^3 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^3 ) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n^3 ) −1  =−Σ_(n=1) ^∞  (((−1)^n )/n^3 )−1 =−(2^(1−3) −1)ξ(3)−1  =−((1/4)−1)ξ(3)−1 =(3/4)ξ(3)−1 ⇒  S =3ln(2)−(π^2 /(12)) +3ln(2)−3 +(3/4)ξ(3)−1  S =6ln(2)+(3/4)ξ(3)−4−(π^2 /(12)) .
letS=n=1(1)nn2(n+1)3letdecomposeF(x)=1x2(x+1)3F(x)=ax+bx2+cx+1+d(x+1)2+e(x+1)3b=1ande=1F(x)=ax+1x2+cx+1+d(x+1)2+1(x+1)3limx+xF(x)=0=a+cc=aF(x)=ax+1x2ax+1+d(x+1)2+1(x+1)3F(1)=18=a+1a2+d4+18a2+d4=12a+d=4F(2)=14=a2+14+a+d11=2a+1+4a+4d41=2a+4d32a+4d=2a+2d=1a=12d2(12d)+d=423d=43d=6d=2a=14=3F(x)=3x+1x2+3x+1+2(x+1)2+1(x+1)3S=n=1(1)nF(n)=3n=1(1)nn+n=1(1)nn2+3n=1(1)nn+1+n=1(1)n(n+1)3n=1(1)nn=ln(2)n=1(1)nn2=(2121)ξ(2)=12π26=π212n=1(1)nn+1=n=2(1)n1n=n=1(1)n1n1=ln(2)1n=1(1)n(n+1)3=n=2(1)n1n3=n=1(1)n1n31=n=1(1)nn31=(2131)ξ(3)1=(141)ξ(3)1=34ξ(3)1S=3ln(2)π212+3ln(2)3+34ξ(3)1S=6ln(2)+34ξ(3)4π212.

Leave a Reply

Your email address will not be published. Required fields are marked *