calculate-n-1-1-n-n-2-n-1-3- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 70595 by mathmax by abdo last updated on 06/Oct/19 calculate∑n=1∞(−1)nn2(n+1)3 Commented by mathmax by abdo last updated on 08/Oct/19 letS=∑n=1∞(−1)nn2(n+1)3letdecomposeF(x)=1x2(x+1)3F(x)=ax+bx2+cx+1+d(x+1)2+e(x+1)3b=1ande=1⇒F(x)=ax+1x2+cx+1+d(x+1)2+1(x+1)3limx→+∞xF(x)=0=a+c⇒c=−a⇒F(x)=ax+1x2−ax+1+d(x+1)2+1(x+1)3F(1)=18=a+1−a2+d4+18⇒a2+d4=−1⇒2a+d=−4F(−2)=−14=−a2+14+a+d−1⇒−1=−2a+1+4a+4d−4⇒−1=2a+4d−3⇒2a+4d=2⇒a+2d=1⇒a=1−2d⇒2(1−2d)+d=−4⇒2−3d=−4⇒−3d=−6⇒d=2⇒a=1−4=−3⇒F(x)=−3x+1x2+3x+1+2(x+1)2+1(x+1)3⇒S=∑n=1∞(−1)nF(n)=−3∑n=1∞(−1)nn+∑n=1∞(−1)nn2+3∑n=1∞(−1)nn+1+∑n=1∞(−1)n(n+1)3∑n=1∞(−1)nn=−ln(2)∑n=1∞(−1)nn2=(21−2−1)ξ(2)=−12π26=−π212∑n=1∞(−1)nn+1=∑n=2∞(−1)n−1n=∑n=1∞(−1)n−1n−1=ln(2)−1∑n=1∞(−1)n(n+1)3=∑n=2∞(−1)n−1n3=∑n=1∞(−1)n−1n3−1=−∑n=1∞(−1)nn3−1=−(21−3−1)ξ(3)−1=−(14−1)ξ(3)−1=34ξ(3)−1⇒S=3ln(2)−π212+3ln(2)−3+34ξ(3)−1S=6ln(2)+34ξ(3)−4−π212. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-70592Next Next post: calculate-by-residus-method-the-integral-0-dx-1-x-2-n-with-n-integr-and-n-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.