Menu Close

calculate-n-1-1-n-n-2n-1-2-




Question Number 68593 by Abdo msup. last updated on 14/Sep/19
calculate  Σ_(n=1) ^∞   (((−1)^n )/(n(2n+1)^2 ))
calculaten=1(1)nn(2n+1)2
Commented by Abdo msup. last updated on 06/Oct/19
let S=Σ_(n=1) ^∞  (((−1)^n )/(n(2n+1)^2 ))  first let decompose  F(x)=(1/(x(2x+1)^2 )) ⇒F(x)=(a/x) +(b/(2x+1)) +(c/((2x+1)^2 ))  a=lim_(x→0) xF(x)=1  c=lim_(x→−(1/2))    (2x+1)^2 F−x)=−2 ⇒  F(x)=(1/x) +(b/(2x+1))−(2/((2x+1)^2 ))  lim_(x→+∞)  xF(x)=0 =1+(b/2) ⇒b+2=0 ⇒b=−2 ⇒  F(x)=(1/x) −(2/(2x+1)) −(2/((2x+1)^2 )) ⇒  S=Σ_(n=1) ^∞  (((−1)^n )/n) −2Σ_(n=1) ^∞  (((−1)^n )/(2n+1)) −2Σ_(n=1) ^∞  (((−1)^n )/((2n+1)^2 ))  we have Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  Σ_(n=1) ^∞  (((−1)^n )/((2n+1))) =Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) −1=(π/4)−1  rest to ca<culate α_0 =Σ_(n=1) ^∞  (((−1)^n )/((2n+1)^2 )) ⇒  S=−ln(2)−(π/2) +2 −2α_0
letS=n=1(1)nn(2n+1)2firstletdecomposeF(x)=1x(2x+1)2F(x)=ax+b2x+1+c(2x+1)2a=limx0xF(x)=1c=limx12(2x+1)2Fx)=2F(x)=1x+b2x+12(2x+1)2limx+xF(x)=0=1+b2b+2=0b=2F(x)=1x22x+12(2x+1)2S=n=1(1)nn2n=1(1)n2n+12n=1(1)n(2n+1)2wehaven=1(1)nn=ln(2)n=1(1)n(2n+1)=n=0(1)n2n+11=π41resttoca<culateα0=n=1(1)n(2n+1)2S=ln(2)π2+22α0

Leave a Reply

Your email address will not be published. Required fields are marked *