Menu Close

calculate-n-1-1-n-n-3-n-1-2-




Question Number 72018 by mathmax by abdo last updated on 23/Oct/19
calculate Σ_(n=1) ^∞    (((−1)^n )/(n^3 (n+1)^2 ))
calculaten=1(1)nn3(n+1)2
Commented by mathmax by abdo last updated on 02/Nov/19
Σ_(n=1) ^∞  (((−1)^n )/(n^3 (n+1)^2 )) =lim_(n→+∞)   Σ_(k=1) ^n   (((−1)^k )/(k^3 (k+1)^2 )) let decompose  F(x)=(1/(x^3 (x+1)^2 )) ⇒F(x)=(a/x) +(b/x^2 ) +(c/x^3 ) +(d/(x+1)) +(e/((x+1)^2 ))  c=lim_(x→0) x^3 F(x)=1  e=lim_(x→−1) (x+1)^2 F(x)=−1 ⇒  F(x)=(a/x) +(b/x^2 ) +(1/x^3 ) +(d/(x+1))−(1/((x+1)^2 ))  lim_(x→+∞) xF(x) =0=a+d ⇒d=−a ⇒  F(x)=(a/x) +(b/x^2 ) +(1/x^3 )−(a/(x+1))−(1/((x+1)^2 ))  F(1)=(1/4) =a+b+1−(a/2)−(1/4) ⇒1=4a+4b+4−2a−1 ⇒  2a+4b+2=0 ⇒a+2b+1=0 ⇒a+2b=−1  F(−2)=(1/(−8)) =−(a/2) +(b/4)−(1/8)+a−1 ⇒(1/8)=−(a/2)−(b/4)+(1/8)+1 ⇒  1=−4a−2b +1 +8 ⇒−4a−2b +8=0 ⇒2a+b=4 ⇒  2(−2b−1)+b=4 ⇒−4b−2+b =4  ⇒−3b =6 ⇒b=−2 ⇒a=3 ⇒  F(x)=(3/x)−(2/x^2 )+(1/x^3 )−(3/(x+1))−(1/((x+1)^2 )) ⇒  S =3Σ_(n=1) ^∞ (((−1)^n )/n)−2Σ_(n=1) ^∞ (((−1)^n )/n^2 ) +Σ_(n=1) ^∞  (((−1)^n )/n^3 )−3Σ_(n=1) ^∞  (((−1)^n )/(n+1))  −Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 ))  we have  Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(2^(1−2) −1)ξ(2)   (formula    Σ_(n=1) ^∞  (((−1)^n )/n^x )=(2^(1−x) −1)ξ(x))  =−(1/2)((π^2 /6))=−(π^2 /(12))  Σ_(n=1) ^∞  (((−1)^n )/n^3 ) =(2^(1−3) −1)ξ(3)=((1/4)−1)ξ(3)=−(3/4)ξ(3)  Σ_(n=1) ^∞  (((−1)^n )/(n+1)) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)−1  =ln(2)−1  Σ_(n=1) ^∞   (((−1)^n )/((n+1)^2 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^2 ) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 )−1  =(π^2 /(12))−1 ⇒  S =−3ln(2)−2(−(π^2 /(12)))−(3/4)ξ(3)−3(ln(2)−1)−((π^2 /(12))−1)  =−6ln(2)+(π^2 /6)−(3/4)ξ(3) +4 −(π^2 /(12))  =−6ln(2)+(π^2 /(12)) +4−(3/4)ξ(3) ⇒  S =(π^2 /(12)) +4−(3/4)ξ(3)−6ln(2)
n=1(1)nn3(n+1)2=limn+k=1n(1)kk3(k+1)2letdecomposeF(x)=1x3(x+1)2F(x)=ax+bx2+cx3+dx+1+e(x+1)2c=limx0x3F(x)=1e=limx1(x+1)2F(x)=1F(x)=ax+bx2+1x3+dx+11(x+1)2limx+xF(x)=0=a+dd=aF(x)=ax+bx2+1x3ax+11(x+1)2F(1)=14=a+b+1a2141=4a+4b+42a12a+4b+2=0a+2b+1=0a+2b=1F(2)=18=a2+b418+a118=a2b4+18+11=4a2b+1+84a2b+8=02a+b=42(2b1)+b=44b2+b=43b=6b=2a=3F(x)=3x2x2+1x33x+11(x+1)2S=3n=1(1)nn2n=1(1)nn2+n=1(1)nn33n=1(1)nn+1n=1(1)n(n+1)2wehaven=1(1)nn=ln(2)n=1(1)nn2=(2121)ξ(2)(formulan=1(1)nnx=(21x1)ξ(x))=12(π26)=π212n=1(1)nn3=(2131)ξ(3)=(141)ξ(3)=34ξ(3)n=1(1)nn+1=n=2(1)n1n=n=1(1)n1n1=ln(2)1n=1(1)n(n+1)2=n=2(1)n1n2=n=1(1)n1n21=π2121S=3ln(2)2(π212)34ξ(3)3(ln(2)1)(π2121)=6ln(2)+π2634ξ(3)+4π212=6ln(2)+π212+434ξ(3)S=π212+434ξ(3)6ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *