calculate-n-1-1-n-n-3-n-1-2- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 72018 by mathmax by abdo last updated on 23/Oct/19 calculate∑n=1∞(−1)nn3(n+1)2 Commented by mathmax by abdo last updated on 02/Nov/19 ∑n=1∞(−1)nn3(n+1)2=limn→+∞∑k=1n(−1)kk3(k+1)2letdecomposeF(x)=1x3(x+1)2⇒F(x)=ax+bx2+cx3+dx+1+e(x+1)2c=limx→0x3F(x)=1e=limx→−1(x+1)2F(x)=−1⇒F(x)=ax+bx2+1x3+dx+1−1(x+1)2limx→+∞xF(x)=0=a+d⇒d=−a⇒F(x)=ax+bx2+1x3−ax+1−1(x+1)2F(1)=14=a+b+1−a2−14⇒1=4a+4b+4−2a−1⇒2a+4b+2=0⇒a+2b+1=0⇒a+2b=−1F(−2)=1−8=−a2+b4−18+a−1⇒18=−a2−b4+18+1⇒1=−4a−2b+1+8⇒−4a−2b+8=0⇒2a+b=4⇒2(−2b−1)+b=4⇒−4b−2+b=4⇒−3b=6⇒b=−2⇒a=3⇒F(x)=3x−2x2+1x3−3x+1−1(x+1)2⇒S=3∑n=1∞(−1)nn−2∑n=1∞(−1)nn2+∑n=1∞(−1)nn3−3∑n=1∞(−1)nn+1−∑n=1∞(−1)n(n+1)2wehave∑n=1∞(−1)nn=−ln(2)∑n=1∞(−1)nn2=(21−2−1)ξ(2)(formula∑n=1∞(−1)nnx=(21−x−1)ξ(x))=−12(π26)=−π212∑n=1∞(−1)nn3=(21−3−1)ξ(3)=(14−1)ξ(3)=−34ξ(3)∑n=1∞(−1)nn+1=∑n=2∞(−1)n−1n=∑n=1∞(−1)n−1n−1=ln(2)−1∑n=1∞(−1)n(n+1)2=∑n=2∞(−1)n−1n2=∑n=1∞(−1)n−1n2−1=π212−1⇒S=−3ln(2)−2(−π212)−34ξ(3)−3(ln(2)−1)−(π212−1)=−6ln(2)+π26−34ξ(3)+4−π212=−6ln(2)+π212+4−34ξ(3)⇒S=π212+4−34ξ(3)−6ln(2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Is-there-f-R-R-such-that-f-x-0-f-x-3-3f-x-2-Next Next post: calculate-interms-of-n-U-n-1-i-lt-j-n-sin-ipi-n-sin-jpi-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.